+0  
 
0
247
2
avatar

Hi can anyone help me?

How to solve 12345678^4-(12345679^2+1)(12345677^2+1)?

The answer is -4 but whyy?? Thanks so much!:)

Guest Aug 19, 2015

Best Answer 

 #1
avatar+18712 
+8

$$\small{\text{$
12345678^4-(12345679^2+1)(12345677^2+1)
$}}$$

 

$$\small{\text{
We set $x = 12345678 $, so we have $x^4 -[ (x+1)^2+1 ]\cdot
[ (x-1)^2 +1 ]
$}}$$

 

$$\small{\text{$
\begin{array}{lcl}
x^4 -[ (x+1)^2+1 ]\cdot [ (x-1)^2 +1 ] \\
&= & x^4 -[ x^2+2x+1+1 ]\cdot [ x^2-2x+1+1 ] \\
&= & x^4 -[ x^2+2x+2 ]\cdot [ x^2-2x+2 ] \\
&= & x^4 -[ (x^2+2)+2x ]\cdot [ (x^2+2)-2x ] \\
&= & x^4 -[ (x^2+2)^2 -(2x)^2 ] \\
&= & x^4 -[ x^4 +4x^2 + 4 -4x^2 ] \\
&= & x^4 -[ x^4 + 4 ] \\
&= & x^4 -x^4 - 4 \\
\mathbf{ x^4 -[ (x+1)^2+1 ]\cdot [ (x-1)^2 +1 ]}& \mathbf{= } & \mathbf{ - 4 } \\
\end{array}
$}}$$

 

heureka  Aug 19, 2015
Sort: 

2+0 Answers

 #1
avatar+18712 
+8
Best Answer

$$\small{\text{$
12345678^4-(12345679^2+1)(12345677^2+1)
$}}$$

 

$$\small{\text{
We set $x = 12345678 $, so we have $x^4 -[ (x+1)^2+1 ]\cdot
[ (x-1)^2 +1 ]
$}}$$

 

$$\small{\text{$
\begin{array}{lcl}
x^4 -[ (x+1)^2+1 ]\cdot [ (x-1)^2 +1 ] \\
&= & x^4 -[ x^2+2x+1+1 ]\cdot [ x^2-2x+1+1 ] \\
&= & x^4 -[ x^2+2x+2 ]\cdot [ x^2-2x+2 ] \\
&= & x^4 -[ (x^2+2)+2x ]\cdot [ (x^2+2)-2x ] \\
&= & x^4 -[ (x^2+2)^2 -(2x)^2 ] \\
&= & x^4 -[ x^4 +4x^2 + 4 -4x^2 ] \\
&= & x^4 -[ x^4 + 4 ] \\
&= & x^4 -x^4 - 4 \\
\mathbf{ x^4 -[ (x+1)^2+1 ]\cdot [ (x-1)^2 +1 ]}& \mathbf{= } & \mathbf{ - 4 } \\
\end{array}
$}}$$

 

heureka  Aug 19, 2015
 #2
avatar+91001 
0

That is cool Heureka  

Melody  Aug 19, 2015

10 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details