+0  
 
+1
169
1
avatar+549 

thank you in advance

 

 

winkwinkwink

lynx7  Apr 19, 2018

Best Answer 

 #1
avatar+963 
+3

Alright, here we go:

 

To prove that an expression is never positive, we just need to prove that the maximun value of the expression is smaller than zero.

 

We can just expand the expression. 

 

\(3(x+1)(x+7)=3x^2+24x+21\)

 

\((2x+5)^2=4x^2+20x+25\)

 

\(3x^2+24x+21- (4x^2+20x+25) = -x^2+4x-4\)

 

Factoring out the negative one, we have:


\( -(x^2-4x+4)\)

 

Since

 

\((x^2-4x+4)\)

 

is a perfect square, we can rewrite the expression like this:

 

\(-(x-2)^2\)

 

Since a square is always positive, and a negative of a square is negative, we proved that the original expression is negative, and always will be negative. 

 

I hope this answers your question and you have a wonderful day!

GYanggg  Apr 19, 2018
edited by GYanggg  Apr 19, 2018
 #1
avatar+963 
+3
Best Answer

Alright, here we go:

 

To prove that an expression is never positive, we just need to prove that the maximun value of the expression is smaller than zero.

 

We can just expand the expression. 

 

\(3(x+1)(x+7)=3x^2+24x+21\)

 

\((2x+5)^2=4x^2+20x+25\)

 

\(3x^2+24x+21- (4x^2+20x+25) = -x^2+4x-4\)

 

Factoring out the negative one, we have:


\( -(x^2-4x+4)\)

 

Since

 

\((x^2-4x+4)\)

 

is a perfect square, we can rewrite the expression like this:

 

\(-(x-2)^2\)

 

Since a square is always positive, and a negative of a square is negative, we proved that the original expression is negative, and always will be negative. 

 

I hope this answers your question and you have a wonderful day!

GYanggg  Apr 19, 2018
edited by GYanggg  Apr 19, 2018

23 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.