We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+2
142
1
avatar+429 

Prove algebraically that the square of any odd number is always 1 more than a multiple of 8. Let n stand for any integer in your working. 

 

Thank you!

smileysmileysmiley

 Feb 16, 2019
 #1
avatar+101872 
+3

May be better ways of doing this....but.....here's my attempt

 

Any odd can be written as (2n + 1).where n is an integer...and a multiple of 8 can be written as   8m where m is an integer.....so we are trying to show that

 

(2n + 1)^2 =   8m + 1          subtract 1 from both sides

 

(2n + 1)^2 -  1       =   8m              expand the left side

 

4n^2 + 4n + 1 - 1 =   8m

 

4n^2 + 4n     =  8m              factor 

 

4n ( n + 1)   =  8m

 

Show that the left side is true  for n = 1

4(1) (1 + 1)  = 4*2 =   8        which is a multiple of 8   

 

Assume that it is true for  n = k ....that is

4k (k + 1)    =  8m

 

Prove it is true for n = k + 1

 

4(k + 1) [ (k + 1) + 1 ]

 

4 ( k + 1) [ k + 2 ]

 

4(k + 1) * k   + 4(k+ 1)* 2

 

4k ( k + 1)  + 8 (k + 1)           [   4k (k + 1)  = 8m    is true by assumption ]

 

8m + 8 ( k + 1)

 

8 ( m + k + 1)

 

Let  (m + k + 1)  = q

 

So

 

8q      is a multiple of 8

 

 

 

cool cool cool

 Feb 16, 2019

11 Online Users