We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
237
1
avatar+50 

 (x^2-4x-12)/(x^2-25)≥0

 May 28, 2018
edited by Bobbly  May 30, 2018
edited by Bobbly  May 30, 2018
 #1
avatar+974 
+4

Hey bobbly!

 

 \(\frac5{x+3}+\frac{3}{x-2}=4\\ \frac{5\cdot(x-2)+3\cdot(x+3)}{(x-2)(x+3)}=4\\ \frac{5x-10+3x+9}{x^2+x-6}=4\\ 5x-10+3x+9=4x^2+4x-24\\ 4x^2-4x-23=0\)

 

We then use the quadratic formula: \(x = {-b \pm \sqrt{b^2-4ac} \over 2a} \), to solve for x. 

 

\(x_1=\frac{-\left(-4\right)+\sqrt{\left(-4\right)^2-4\cdot \:4\left(-23\right)}}{2\cdot \:4}=\frac{1+2\sqrt{6}}{2}\)

\(x_2=\frac{-\left(-4\right)-\sqrt{\left(-4\right)^2-4\cdot \:4\left(-23\right)}}{2\cdot \:4}=\frac{1-2\sqrt{6}}{2}\)

 

I hope this helped,

 

Gavin

 May 28, 2018

13 Online Users

avatar
avatar
avatar