+0  
 
0
7103
1
avatar

Alicia can row 6 miles downstream in the same time it takes her 4 miles to row upstream. She rows downstream 5miles/hour faster than she rows upstream. Find Alicia's rowing rate each way. Round your answers to the nearest tenth, if necessary.

 Dec 18, 2014

Best Answer 

 #1
avatar+130071 
+5

Let x be the slower rate......and x + 5 is the faster rate

Equating times, we have......Distance / Rate = T   ......so....

6miles /( x + 5)mph   =  4 miles / (x) mph       cross-multiply

6x  = 4(x + 5)

6x  = 4x + 20     subtract 4x from both sides

2x  = 20             divide both sides by 2

x = 10 mph    = the upstream rate

And x + 5 = the downstream rate  = 10 + 5  = 15 mph

 

 Dec 18, 2014
 #1
avatar+130071 
+5
Best Answer

Let x be the slower rate......and x + 5 is the faster rate

Equating times, we have......Distance / Rate = T   ......so....

6miles /( x + 5)mph   =  4 miles / (x) mph       cross-multiply

6x  = 4(x + 5)

6x  = 4x + 20     subtract 4x from both sides

2x  = 20             divide both sides by 2

x = 10 mph    = the upstream rate

And x + 5 = the downstream rate  = 10 + 5  = 15 mph

 

CPhill Dec 18, 2014

3 Online Users

avatar
avatar