+0

# An engineer estimates the angle of elevation

0
476
1

An engineer estimates the angle of elevation to the top of the building to be 50°. After moving 1.5 meters further away, the angle of elevation was 40°. How high is the top of the building?

Guest May 5, 2017
#1
+20153
+3

An engineer estimates the angle of elevation to the top of the building to be 50°.
After moving 1.5 meters further away, the angle of elevation was 40°.
How high is the top of the building?

$$\begin{array}{|lrcll|} \hline (1) & \tan(50^{\circ}) &=& \frac{h}{x} \\ & x &=& \frac{h}{\tan(50^{\circ})} \\\\ (2) & \tan(40^{\circ}) &=& \frac{h}{1.5+x} \\ & \tan(40^{\circ}) &=& \frac{h}{1.5+\frac{h}{\tan(50^{\circ})}} \\ & \tan(40^{\circ})\cdot \left( 1.5+\frac{h}{\tan(50^{\circ})}\right) &=& h \\ & 1.5\cdot \tan(40^{\circ}) + h\cdot \frac{ \tan(40^{\circ}) } { \tan(50^{\circ}) } &=& h \\ & h-h\cdot \frac{ \tan(40^{\circ}) } { \tan(50^{\circ}) } &=& 1.5\cdot \tan(40^{\circ}) \\ & h\cdot \left(1- \frac{ \tan(40^{\circ} ) } { \tan(50^{\circ}) } \right) &=& 1.5\cdot \tan(40^{\circ}) \\ & h\cdot \left( \frac{ \tan(50^{\circ})-\tan(40^{\circ} ) } { \tan(50^{\circ}) } \right) &=& 1.5\cdot \tan(40^{\circ}) \\ & h &=& 1.5\cdot \left( \frac{ \tan(50^{\circ})\cdot\tan(40^{\circ}) }{ \tan(50^{\circ})-\tan(40^{\circ} ) } \right) \\ & h &=& 1.5\cdot \left( \frac{ 1.19175359259\cdot 0.83909963118}{ 1.19175359259-0.83909963118 ) } \right) \\ & h &=& 1.5\cdot \left( \frac{ 1 }{ 0.35265396142 } \right) \\ & h &=& 1.5\cdot 2.83564090981 \\ & h &=& 4.25346136471\ m \\ \hline \end{array}$$

The top of the building is 4.25 m high.

heureka  May 5, 2017
edited by heureka  May 5, 2017

### New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.