+0

# An equilateral triangle of side 12 centimeters is rotated about an altitude to form a cone. What is the number of cubic centimeters in the v

0
875
1
An equilateral triangle of side 12 centimeters is rotated about an altitude to form a cone. What is the number of cubic centimeters in the volume of the cone?
Oct 24, 2017

#1
+1

volume of cone  =  (1/3)(pi)(radius)2(height)

The height of the cone will be the same as the height of the triangle. height  =  12 sin 60°  =  12 √3 / 2   =  6√3

The radius of the cone will be half of the base of the triangle.

radius  =  12 / 2  =  6

So..   volume of cone  =  (1/3)(pi)(6)2(6√3)   =   (1/3)(pi)(36)(6√3)  =  72 pi √3  cubic centimeters

Oct 24, 2017

#1
+1

volume of cone  =  (1/3)(pi)(radius)2(height)

The height of the cone will be the same as the height of the triangle. height  =  12 sin 60°  =  12 √3 / 2   =  6√3

The radius of the cone will be half of the base of the triangle.

radius  =  12 / 2  =  6

So..   volume of cone  =  (1/3)(pi)(6)2(6√3)   =   (1/3)(pi)(36)(6√3)  =  72 pi √3  cubic centimeters

hectictar Oct 24, 2017