An inbox tray has 3 walls and an open side on one of the longer sides.
Determine the maximum area of the tray if all three walls total to a length of 812 mm. Show your formula.
Let the 2 short sides be x and the long side be y
2x+y=812y=812−2xArea(A)=x∗yA=x(812−2x)A=812x−2x2dAdx=812−4xd2Adx2=−4∩$Thismeansthatanystationarypointwillbeamaximum$$findstatpoint$dAdx=00=812−4x4x=812x=203$Thetraywillbeofmaximumareifthesidesare20.3cmby40.6cm$