Integrate: ∫x^4[1 - x]^4 / [1 + x^2]dx,from x=0 to 1
Please show the steps. Thank you very much for the help.
Let's first simplify x^4[1 - x]^4 / [1 + x^2]
[1 - x]^4 = [x - 1]^4 = x^4 - 4x^3 + 6x^2 - 4x + 1
So ..... x^4[ 1 - x]^4 / [ 1 + x^2] = x^4 [ x^4 - 4x^3 + 6x^2 - 4x + 1] / [1 + x^2] =
[ x^8 - 4x^7 + 6x^6 - 4x^5 + x^4] / [ 1 + x^2]
Perform synthetic division
x^6 - 4x^5 + 5x^4 - 4x^2 + 4
x^2 + 1 [ x^8- 4x^7 + 6x^6 - 4x^5 + x^4]
x^8 x^6
_________________________
-4x^7 + 5x^6 - 4x^5 + x^4
-4x^7 -4x^5
_______________________
5x^6 + x^4
5x^6 + 5x^4
__________________
-4x^4
-4x^4 - 4x^2
___________
4x^2
4x^2 + 4
_______
-4
So......we have
1
∫ x^6 - 4x^5 + 5x^4 - 4x^2 + 4 - 4 / [ x^2 + 1] dx =
0
1 1 1 1 1 1
x^7/7 ] - (2/3)x^6 ] + x^5 ] - (4/3)x^3 ] + 4x ] - 4arctan(x) ] =
0 0 0 0 0 0
(1/7) - (2/3) + 1 - (4/3) + 4 - 4arctan(1) =
22/7 - 4 [pi / 4] =
22/7 - pi ≈ 0.0013
Chris I do not think your answer is correct either becasue Wolfram Alpha says the answer is approx 0.0023
https://www.wolframalpha.com/input/?i=integral+of+((x%5E4(1-x)%5E4)%2F(1-x%5E2))dx+from+0+to+1
Integrate: ∫x^4[1 - x]^4 / [1 + x^2]dx,from x=0 to 1
\(\displaystyle\int_0^1\;\frac{x^4(1-x)^4}{1-x^2}\;dx\\ =\displaystyle\int_0^1\;\frac{x^4(1-x)^4}{(1-x)(1+x)}\;dx\\ =-\displaystyle\int_0^1\;\frac{x^4(x-1)^3}{x+1}\;dx\\ =-\displaystyle\int_0^1\;\frac{x^4(x^3-3x^2+3x-1)}{x+1}\;dx\\ =-\displaystyle\int_0^1\;\frac{x^7-3x^6+3x^5-x^4}{x+1}\;dx\\ \text{Do the algebraic division}\\ =-\displaystyle\int_0^1\;x^6-4x^5+7x^4-6x^3+6x^2-6x+6-\frac{6}{x+1}\;dx\\ \)
\( =-\displaystyle\int_0^1\;x^6-4x^5+7x^4-6x^3+6x^2-6x+6-\frac{6}{x+1}\;dx\\ =-\left[\; \frac{x^7}{7}-\frac{4x^6}{6}+\frac{7x^5}{5}-\frac{6x^4}{4}+\frac{6x^3}{3}-\frac{6x^2}{2}+6x-6ln(x+1)\;\right]_0^1\\ =-\left[\; \frac{x^7}{7}-\frac{2x^6}{3}+\frac{7x^5}{5}-\frac{3x^4}{2}+2x^3-3x^2+6x-6ln(x+1)\;\right]_0^1\\ =-\left[\; \frac{1}{7}-\frac{2}{3}+\frac{7}{5}-\frac{3}{2}+2-3+6-6ln(2)\;\right]\\ =-\left[\; \frac{1}{7}-\frac{2}{3}+\frac{7}{5}-\frac{3}{2}+5-6ln(2)\;\right]\)
1/7-2/3+7/5-3/2+5 = 4.3761904761904762 = 919/210
\(=6ln2-\frac{919}{210}\)
-4.3761904761904762+6*log(2) = -2.570010502206589
This is not correct, I have made some silly mistake somewhere, but the method is correct :)
Wolfram Alpha says the answer is approx 0.0023
Mmmm.....WA seems to get the same result that I have :
https://www.wolframalpha.com/input/?i=x%5E4%5B1+-+x%5D%5E4+%2F+%5B1+%2B+x%5E2%5Ddx,from+x%3D0+to+1
Compute the definite integral:
integral_0^1 ((1 - x)^4 x^4)/(x^2 + 1) dx
For the integrand ((1 - x)^4 x^4)/(x^2 + 1), cancel common terms in the numerator and denominator:
= integral_0^1 ((x - 1)^4 x^4)/(x^2 + 1) dx
For the integrand ((x - 1)^4 x^4)/(x^2 + 1), do long division:
= integral_0^1 (x^6 - 4 x^5 + 5 x^4 - 4 x^2 - 4/(x^2 + 1) + 4) dx
Integrate the sum term by term and factor out constants:
= -4 integral_0^1 1/(x^2 + 1) dx + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of 1/(x^2 + 1) is tan^(-1)(x):
= (-4 tan^(-1)(x)) right bracketing bar _0^1 + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
(-4 tan^(-1)(x)) right bracketing bar _0^1 = (-4 tan^(-1)(1)) - (-4 tan^(-1)(0)) = -π:
= -π + integral_0^1 x^6 dx - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^6 is x^7/7:
= -π + x^7/7 right bracketing bar _0^1 - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
x^7/7 right bracketing bar _0^1 = 1^7/7 - 0^7/7 = 1/7:
= 1/7 - π - 4 integral_0^1 x^5 dx + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^5 is x^6/6:
= 1/7 - π + (-(2 x^6)/3) right bracketing bar _0^1 + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
(-(2 x^6)/3) right bracketing bar _0^1 = (-(2 1^6)/3) - (-(2 0^6)/3) = -2/3:
= -11/21 - π + 5 integral_0^1 x^4 dx - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^4 is x^5/5:
= -11/21 - π + x^5 right bracketing bar _0^1 - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
x^5 right bracketing bar _0^1 = 1^5 - 0^5 = 1:
= 10/21 - π - 4 integral_0^1 x^2 dx + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of x^2 is x^3/3:
= 10/21 - π + (-(4 x^3)/3) right bracketing bar _0^1 + 4 integral_0^1 1 dx
Evaluate the antiderivative at the limits and subtract.
(-(4 x^3)/3) right bracketing bar _0^1 = (-(4 1^3)/3) - (-(4 0^3)/3) = -4/3:
= -6/7 - π + 4 integral_0^1 1 dx
Apply the fundamental theorem of calculus.
The antiderivative of 1 is x:
= -6/7 - π + 4 x right bracketing bar _0^1
Evaluate the antiderivative at the limits and subtract.
4 x right bracketing bar _0^1 = 4 1 - 4 0 = 4:
Answer: |= 22/7 - π