+0  
 
0
205
2
avatar+8 

if x+ 1/x= 2, what is x2 + 1/x2

JZMABURAZER  Mar 13, 2017

Best Answer 

 #2
avatar+19653 
+5

if x+ 1/x= 2, what is x2 + 1/x2

if  \(x+ \frac{1}{x}= 2\) , what is \( x^2 + \frac{1}{x^2}\)

 

\(\begin{array}{|rcll|} \hline x+ \frac{1}{x} &=& 2 \quad & | \quad \text{square both sides} \\ \left(~x+ \frac{1}{x}~\right)^2 &=& 2^2 \\ \left(~x+ \frac{1}{x}~\right)^2 &=& 4 \\ x^2 +2\cdot x\cdot \frac{1}{x} + \frac{1}{x^2} &=& 4 \\ x^2 +2 + \frac{1}{x^2} &=& 4 \quad & | \quad -2 \\ x^2 + \frac{1}{x^2} &=& 4-2 \\ \mathbf{x^2 + \frac{1}{x^2}} & \mathbf{=} & \mathbf{2} \\ \hline \end{array} \)

 

laugh

heureka  Mar 14, 2017
 #1
avatar+7155 
+6

\(x + \frac{1}{x} = 2 \\ x + \frac{1}{x} - 2 = 0 \\ \frac{x^2}{x} + \frac{1}{x} - \frac{2x}{x} = 0 \\ \frac{x^2+1-2x}{x} = 0\)

We want to know what makes the numerator = 0.

You can also just say multiply both sides by x.

\(x^2+1-2x = 0 \\ (x-1)(x-1) = 0 \\ x = 1\)

(You can easily test this and see that 1 + 1/1 = 2)

 

So

\(1^2 + \frac{1}{1^2} = 1 + 1 = 2\)

hectictar  Mar 13, 2017
 #2
avatar+19653 
+5
Best Answer

if x+ 1/x= 2, what is x2 + 1/x2

if  \(x+ \frac{1}{x}= 2\) , what is \( x^2 + \frac{1}{x^2}\)

 

\(\begin{array}{|rcll|} \hline x+ \frac{1}{x} &=& 2 \quad & | \quad \text{square both sides} \\ \left(~x+ \frac{1}{x}~\right)^2 &=& 2^2 \\ \left(~x+ \frac{1}{x}~\right)^2 &=& 4 \\ x^2 +2\cdot x\cdot \frac{1}{x} + \frac{1}{x^2} &=& 4 \\ x^2 +2 + \frac{1}{x^2} &=& 4 \quad & | \quad -2 \\ x^2 + \frac{1}{x^2} &=& 4-2 \\ \mathbf{x^2 + \frac{1}{x^2}} & \mathbf{=} & \mathbf{2} \\ \hline \end{array} \)

 

laugh

heureka  Mar 14, 2017

3 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.