+0  
 
0
116
2
avatar+8 

if x+ 1/x= 2, what is x2 + 1/x2

JZMABURAZER  Mar 13, 2017

Best Answer 

 #2
avatar+18777 
+5

if x+ 1/x= 2, what is x2 + 1/x2

if  \(x+ \frac{1}{x}= 2\) , what is \( x^2 + \frac{1}{x^2}\)

 

\(\begin{array}{|rcll|} \hline x+ \frac{1}{x} &=& 2 \quad & | \quad \text{square both sides} \\ \left(~x+ \frac{1}{x}~\right)^2 &=& 2^2 \\ \left(~x+ \frac{1}{x}~\right)^2 &=& 4 \\ x^2 +2\cdot x\cdot \frac{1}{x} + \frac{1}{x^2} &=& 4 \\ x^2 +2 + \frac{1}{x^2} &=& 4 \quad & | \quad -2 \\ x^2 + \frac{1}{x^2} &=& 4-2 \\ \mathbf{x^2 + \frac{1}{x^2}} & \mathbf{=} & \mathbf{2} \\ \hline \end{array} \)

 

laugh

heureka  Mar 14, 2017
Sort: 

2+0 Answers

 #1
avatar+5552 
+6

\(x + \frac{1}{x} = 2 \\ x + \frac{1}{x} - 2 = 0 \\ \frac{x^2}{x} + \frac{1}{x} - \frac{2x}{x} = 0 \\ \frac{x^2+1-2x}{x} = 0\)

We want to know what makes the numerator = 0.

You can also just say multiply both sides by x.

\(x^2+1-2x = 0 \\ (x-1)(x-1) = 0 \\ x = 1\)

(You can easily test this and see that 1 + 1/1 = 2)

 

So

\(1^2 + \frac{1}{1^2} = 1 + 1 = 2\)

hectictar  Mar 13, 2017
 #2
avatar+18777 
+5
Best Answer

if x+ 1/x= 2, what is x2 + 1/x2

if  \(x+ \frac{1}{x}= 2\) , what is \( x^2 + \frac{1}{x^2}\)

 

\(\begin{array}{|rcll|} \hline x+ \frac{1}{x} &=& 2 \quad & | \quad \text{square both sides} \\ \left(~x+ \frac{1}{x}~\right)^2 &=& 2^2 \\ \left(~x+ \frac{1}{x}~\right)^2 &=& 4 \\ x^2 +2\cdot x\cdot \frac{1}{x} + \frac{1}{x^2} &=& 4 \\ x^2 +2 + \frac{1}{x^2} &=& 4 \quad & | \quad -2 \\ x^2 + \frac{1}{x^2} &=& 4-2 \\ \mathbf{x^2 + \frac{1}{x^2}} & \mathbf{=} & \mathbf{2} \\ \hline \end{array} \)

 

laugh

heureka  Mar 14, 2017

4 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details