+0  
 
0
576
1
avatar

Let k be a positive real number. The line x + y = k and the circle x^2 + y^2 = 2k + 1 are drawn. Find k so that the line is tangent to the circle.

 Feb 24, 2021
 #1
avatar+605 
0

It's obviously tangent at $(k/2, k/2)$. So $\frac{k^2}{2}=2k+1\implies k^2=4k+2\implies k^2-4k-2=0\implies k=2\pm\sqrt{6}$. We take positive root, so $\boxed{k=2+\sqrt{6}}$.

 Feb 24, 2021
edited by thedudemanguyperson  Feb 24, 2021

1 Online Users

avatar