+0  
 
+2
62
2
avatar+1442 

1:  The square with vertices (-a, -a), (a, -a), (-a, a), (a, a) is cut by the line y = x/2 into congruent quadrilaterals. The perimeter of one of these congruent quadrilaterals divided by a equals what? Express your answer in simplified radical form.

 

2:  Find the equation of the line passing through the points (-3,-16) and (4,5). Enter your answer in "y = mx + b" form.

 

Thank you!

 #1
avatar+87562 
+1

1:  The square with vertices (-a, -a), (a, -a), (-a, a), (a, a) is cut by the line y = x/2 into congruent quadrilaterals. The perimeter of one of these congruent quadrilaterals divided by a equals what? Express your answer in simplified radical form.

 

 

The length of the sides of one of the quadrilaterals will be the distances between these points :  

 

(-a,  a)  and  (a, a)  = √ [ -a - a)^2  + ( a - a)^2]  = √ [ (-2a)^2 ]  = 2a

 

( a,a) and (a, a/2)  = √ [ (a - a)^2  + ( a - a/2)^2 ] = √ [ a^2/4] = a/2

 

( -a, a)   and ( -a, -a/2)  = √ [ (-a  - -a)^2  + ( a -  -a/2)^2 ] = √ (3/2a)^2  =  (3/2)a

 

( -a, -a/2)  and ( (a, a/2)  = √ [ (a - -a)^2  + (a/2 -  -a/2)^2  ] = √[ 4a^2  + a^2] = (√5 )a

 

So...the perimeter of the quadrilateral  divided by  a  =   

 

[ 2a  + a/2  + (3/2a) + (√5)a ] / a   =   [  4a + (√5)a  ]  / a   =    a [ 4 + √5] / a    =  [ 4  + √5 ]  units

 

Note, ACG...look at the graph here when a  = 4.....verify for yourself that no matter the value of "a", the answer will be the "constant" answer found above :  https://www.desmos.com/calculator/dfrfzvd5mb

 

 

 

 

 

2:  Find the equation of the line passing through the points (-3,-16) and (4,5). Enter your answer in "y = mx + b" form.

 

Well...this one is a litle easier than the first  !!!

 

Slope  between the points is  [ -16 - 5 ] / [ -3  -4 ] =  -21 /  -7  = 3

 

So the equation of the line is :

 

y  = 3(x - 4)  + 5

y = 3x - 12 + 5

y  = 3x - 7

 

 

 

 

cool cool cool

CPhill  Jun 6, 2018
edited by CPhill  Jun 6, 2018
edited by CPhill  Jun 6, 2018
 #2
avatar+1442 
+2

Followed your advice, thank you so much!


13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.