+0  
 
0
67
1
avatar

Another pre calc proof help please?? I don’t get how you’re supposed to prove. I am extremely uncomfortable in this topic.

 Dec 10, 2018
 #1
avatar+3576 
+1

\(\text{The first statement is false}\\ |z| \in \mathbb{R},~\forall z \in \mathbb{C}\\ i |z| \not \in \mathbb{R}\)

 

\(|z \cdot w | =\\ |(z_r w_r -z_i w_i) + i(z_r w_i + z_i w_r)| = \\ \sqrt{(z_r w_r -z_i w_i)^2 + (z_r w_i + z_i w_r)^2} = \\ \sqrt{-2 w_i z_i w_r z_r+w_i^2 z_i^2+w_r^2 z_r^2 + z_i^2 w_r^2+2 w_i z_i w_r z_r+w_i^2 z_r^2}=\)

 

\(\sqrt{w_r^2 z_r^2 + z_r^2 w_i^2 + z_i^2 w_r^2 + w_r^2 w_i^2}=\\ \sqrt{(z_r^2+z_i^2)(w_r^2+w_i)^2} = \\ \sqrt{z_r^2 + z_i^2}\sqrt{w_r^2+w_i^2} =\\ |z||w|\)

.
 Dec 10, 2018

27 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.