+0  
 
0
456
5
avatar

10^10^100=X

 

X=?

 Sep 5, 2017

Best Answer 

 #2
avatar+2340 
+1

When stacks of powers exist, you evaluate it from top to the bottom, unless parentheses are present.

 

Therefore, \(10^{10^{100}}\) is a vastly larger number than asinus is making it out to be. Maybe this will help. \(10^{10^{100}}=10^{10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\)

 

\(10^{1000}\) is miniscule in comparison. 

 Sep 5, 2017
 #1
avatar+8079 
0

10^10^100=X

X=?

 

X = (1010)100 = 101000 = 10 * 10999

GB and USA:

X = 10 Trecentduotrigintillion

 

rest of the world

X = 10 Centsexsexagintilliarde

 

laugh  !

 Sep 5, 2017
edited by asinus  Sep 5, 2017
edited by asinus  Sep 5, 2017
edited by asinus  Sep 5, 2017
 #2
avatar+2340 
+1
Best Answer

When stacks of powers exist, you evaluate it from top to the bottom, unless parentheses are present.

 

Therefore, \(10^{10^{100}}\) is a vastly larger number than asinus is making it out to be. Maybe this will help. \(10^{10^{100}}=10^{10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\)

 

\(10^{1000}\) is miniscule in comparison. 

TheXSquaredFactor Sep 5, 2017
 #3
avatar+8079 
0

Hallo X2 !

From left to right, with the same operators.

From top to bottom, where is that determined?

 

a^2^3 = \((a^2)^{3}=a^2*a^2*a^2=a^{(2*3)}\color{blue}=a^6\)

 

sorry! smiley

 Sep 5, 2017
edited by asinus  Sep 5, 2017
 #4
avatar+27558 
+2

You are having a bad day asinus!

 

(a2)3 is, indeed, a2*3 → a6 

 

However  \(a^{2^3}\rightarrow a^{(2^3)}\rightarrow a^8\) 

 

.

Alan  Sep 5, 2017
 #5
avatar+8079 
+1

Thanks Alan, I corrected it. smiley

asinus  Sep 5, 2017

32 Online Users

avatar
avatar