We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

Area of a trapezium using similar shapes

+2
171
1
+122

The answers in the box are wrong and i looked through my book to see how to do it,i can't figure it out

Oct 4, 2018

Best Answer

#1
+7354
+2

Notice that....

area of trapezium ABDE  =  area of triangle ACE  -  area of triangle BCD

And we know that △ACE and △BCD are similar triangles, because

m∠ACE  =  m∠BCD     and     m∠BDC  =  m∠AEC  =  90°

so by the AA similarity theorem, we can say that  △ACE ~ △BCD .

Now we can find the length of CE .

$$\frac{\text{CE}}{\text{CD}}\,=\,\frac{\text{AE}}{\text{BD}}\\~\\ \frac{\text{CE}}{8\text{ cm}}\,=\,\frac{9\text{ cm}}{6\text{ cm}}\\~\\ \text{CE}\,=\,\frac{9\text{ cm}}{6\text{ cm}}\cdot8\text{ cm}\\~\\ \text{CE}\,=\,12\text{ cm}$$

Now we can find the area of  △ACE  and the area of  △BCD .

area of △ACE  =  (1/2)( CE )( AE )

area of △ACE  =  (1/2)( 12 cm )( 9 cm )

area of △ACE  =  54 cm2

area of △BCD  =  (1/2)( CD )( BD )

area of △BCD  =  (1/2)( 8 cm )( 6 cm )

area of △BCD  =  24 cm2

Now we can find the area of trapezium ABDE.

area of trapezium ABDE  =  area of △ACE  -  area of △BCD

area of trapezium ABDE  =  54 cm2  -  24 cm2

area of trapezium ABDE  =  30 cm2

Oct 4, 2018

1+0 Answers

#1
+7354
+2
Best Answer

Notice that....

area of trapezium ABDE  =  area of triangle ACE  -  area of triangle BCD

And we know that △ACE and △BCD are similar triangles, because

m∠ACE  =  m∠BCD     and     m∠BDC  =  m∠AEC  =  90°

so by the AA similarity theorem, we can say that  △ACE ~ △BCD .

Now we can find the length of CE .

$$\frac{\text{CE}}{\text{CD}}\,=\,\frac{\text{AE}}{\text{BD}}\\~\\ \frac{\text{CE}}{8\text{ cm}}\,=\,\frac{9\text{ cm}}{6\text{ cm}}\\~\\ \text{CE}\,=\,\frac{9\text{ cm}}{6\text{ cm}}\cdot8\text{ cm}\\~\\ \text{CE}\,=\,12\text{ cm}$$

Now we can find the area of  △ACE  and the area of  △BCD .

area of △ACE  =  (1/2)( CE )( AE )

area of △ACE  =  (1/2)( 12 cm )( 9 cm )

area of △ACE  =  54 cm2

area of △BCD  =  (1/2)( CD )( BD )

area of △BCD  =  (1/2)( 8 cm )( 6 cm )

area of △BCD  =  24 cm2

Now we can find the area of trapezium ABDE.

area of trapezium ABDE  =  area of △ACE  -  area of △BCD

area of trapezium ABDE  =  54 cm2  -  24 cm2

area of trapezium ABDE  =  30 cm2

hectictar Oct 4, 2018