Heron's: \(\sqrt{s(s-a)(s-b)(s-c)}\), where \(s\) is the semiperimeter and \(a,b,c\) are the sides. The semiperimeter can be found by \(\frac{A+B+C}{2}=\frac{4+6+8}{2}=\frac{18}{2}=9.\) Now, we have \(\sqrt{9(9-4)(9-6)(9-8)}=\sqrt{9*5*3*1}=\sqrt{135}=3\sqrt{15}.\)