+0  
 
+1
59
1
avatar+79 

Find area of triangle with sides 4, 6, and 8 in simplest radical form

 Dec 18, 2018

Best Answer 

 #1
avatar+3729 
+2

Heron's: \(\sqrt{s(s-a)(s-b)(s-c)}\), where \(s\) is the semiperimeter and \(a,b,c\) are the sides. The semiperimeter can be found by \(\frac{A+B+C}{2}=\frac{4+6+8}{2}=\frac{18}{2}=9.\) Now, we have \(\sqrt{9(9-4)(9-6)(9-8)}=\sqrt{9*5*3*1}=\sqrt{135}=3\sqrt{15}.\)

.
 Dec 18, 2018
 #1
avatar+3729 
+2
Best Answer

Heron's: \(\sqrt{s(s-a)(s-b)(s-c)}\), where \(s\) is the semiperimeter and \(a,b,c\) are the sides. The semiperimeter can be found by \(\frac{A+B+C}{2}=\frac{4+6+8}{2}=\frac{18}{2}=9.\) Now, we have \(\sqrt{9(9-4)(9-6)(9-8)}=\sqrt{9*5*3*1}=\sqrt{135}=3\sqrt{15}.\)

tertre Dec 18, 2018

12 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.