27.
K = area of triangle = \(\frac12\) ( base )( height )
Let the base = a
and the height = c sin B
Let's get c in terms of what we know using the Law of Sines
\(\frac{c}{\sin C}\,=\,\frac{a}{\sin A}\\~\\ c\,=\,\frac{a\sin C}{\sin A}\)
So the height = c sin B = (\(\frac{a\sin C}{\sin A}\)) sin B = \(\frac{a\sin B\sin C}{\sin A}\)
K = area of triangle = \(\frac12\) ( base )( height ) = \(\frac12\) ( a )( \(\frac{a\sin B\sin C}{\sin A}\) ) = \(\frac{a^2\sin B\sin C}{2\sin A}\)
\(K\,=\,\frac{a^2\sin B\sin C}{2\sin A}\)