\(\frac{5e^{\frac{\pi}{2}i}}{2e^{\frac{5\pi}{6}i}}\\~\\ =\frac{5}{2}e^{ (\frac{\pi}{2}-\frac{5\pi}{6}) i }\\~\\ =\frac{5}{2}e^{ (\frac{-2\pi}{6}) i }\\~\\ =\frac{5}{2}e^{ (\frac{-\pi}{3}) i }\\~\\ =\frac{5}{2}(cos(\frac{-\pi}{3})+isin(\frac{-\pi}{3})) \)