Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+3
1098
2
avatar+239 

Find the sum of the terms from the (n + 1) th to the m th term inclusive of an arithmetical progression whose

first term is a and whose second term is b.

If m = 13, n =   3 and the sum is 12a, find the ratio b: a.

 

Answer (m-n){a+1/2(m+n-1)(b-a)} ; 77/75

 Feb 8, 2018
edited by OldTimer  Feb 8, 2018
 #1
avatar+26396 
+1

Find the sum of the terms from the (n + 1) th to the m th term inclusive of an arithmetical progression whose

first term is a and whose second term is b.

If m = 13, n =   3 and the sum is 12a, find the ratio b: a.

 

Answer (m-n){a+1/2(m+n-1)(b-a)} ; 77/75

 

Formula arithmetical progression: a1=aa2=a+d

 

second term is b: a2=a+da2=ba+d=bd=ba

 

The common difference is ba

 

The sum of the member is: sn=na+n(n1)2d

 

The sum of the terms from the (n + 1) th to the m th term is: smsn=ma+m(m1)2(ba)=sm[na+n(n1)2(ba)=sn]=a(mn)+(ba2)[m(m1)n(n1)]=a(mn)+(ba2)(m2mn2+n)=a(mn)+(ba2)(m2n2m+n)=a(mn)+(ba2)[m2n2(mn)]=a(mn)+(ba2)[(mn)(m+n)(mn)]=a(mn)+(ba2)(mn)(m+n1)smsn=(mn)[a+(ba2)(m+n1)]

 

If m=13,n=3 and the sum is 12a, find the ratio b:a smsn=(mn)[a+(ba2)(m+n1)]12a=(mn)[a+(ba2)(m+n1)]12amn=a+(ba2)(m+n1)12amn=a+(b2)(m+n1)(a2)(m+n1)a(12mn1+m+n12)=b(m+n12)m=13n=3a(12101+152)=b(152)ba=(215)(12101+152)=(215)(1210+7510)=277150=277275ba=7775

 

 

laugh

 Feb 8, 2018
 #2
avatar
+2

12a = (m-n){a+1/2(m+n-1)(b-a)} , where m=13, n = 3

 

12a =(13 - 3)* [a + 1/2(13+3 -1)*(b -a)]

12a = 10*[a + 1/2(15)*(b - a)]

12a = 10*[a + 1/2(15b - 15a)]

12a = 10a + 5(15b - 15a)

12a = 10a + 75b - 75a

12a - 10a + 75a = 75b

77a = 75b

b =77a / 75, or

b/a = 77 / 75

 Feb 8, 2018

1 Online Users