+0  
 
+3
71
2
avatar+46 

Find the sum of the terms from the (n + 1) th to the m th term inclusive of an arithmetical progression whose

first term is a and whose second term is b.

If m = 13, n =   3 and the sum is 12a, find the ratio b: a.

 

Answer (m-n){a+1/2(m+n-1)(b-a)} ; 77/75

OldTimer  Feb 8, 2018
edited by OldTimer  Feb 8, 2018
Sort: 

2+0 Answers

 #1
avatar+19206 
+1

Find the sum of the terms from the (n + 1) th to the m th term inclusive of an arithmetical progression whose

first term is a and whose second term is b.

If m = 13, n =   3 and the sum is 12a, find the ratio b: a.

 

Answer (m-n){a+1/2(m+n-1)(b-a)} ; 77/75

 

\(\text{Formula arithmetical progression: }\\ \begin{array}{|rcll|} \hline a_1 &=& a \\ a_2 &=& a+d \\ \hline \end{array} \)

 

\(\text{second term is b: }\\ \begin{array}{|rcll|} \hline a_2 &=& a+d \\ a_2 &=& b \\ \hline a+d &=& b \\ \mathbf{d} & \mathbf{=} & \mathbf{b-a} \\ \hline \end{array}\)

 

The common difference is \(\mathbf{b-a}\)

 

\(\text{The sum of the member is: }\\ \begin{array}{|rcll|} \hline s_n = n\cdot a + \dfrac{n(n-1)}{2}\cdot d \\ \hline \end{array} \)

 

\(\text{The sum of the terms from the (n + 1) th to the m th term is: }\\ \begin{array}{|rcll|} \hline s_m-s_n &=& \underbrace{m\cdot a + \dfrac{m(m-1)}{2}\cdot (b-a)}_{=s_m} - \left[ \underbrace{n\cdot a + \dfrac{n(n-1)}{2}\cdot (b-a)}_{=s_n} \right] \\\\ &=& a(m-n) + \left(\dfrac{b-a}{2}\right)[ m(m-1)-n(n-1) ] \\\\ &=& a(m-n) + \left(\dfrac{b-a}{2}\right)( m^2-m-n^2+n ) \\\\ &=& a(m-n) + \left(\dfrac{b-a}{2}\right)( m^2-n^2-m+n ) \\\\ &=& a(m-n) + \left(\dfrac{b-a}{2}\right)[ m^2-n^2-(m-n) ] \\\\ &=& a(m-n) + \left(\dfrac{b-a}{2}\right)[ (m-n)(m+n)-(m-n) ] \\\\ &=& a(m-n) + \left(\dfrac{b-a}{2}\right)(m-n)( m+n-1 ) \\\\ \mathbf{s_m-s_n} &\mathbf{=}& \mathbf{ (m-n)\left[ a + \left(\dfrac{b-a}{2}\right)( m+n-1 ) \right] } \\ \hline \end{array}\)

 

\(\small{ \text{If $m = 13, n = 3$ and the sum is $12a$, find the ratio $b: a$ }\\ \begin{array}{|rcll|} \hline \mathbf{s_m-s_n} &\mathbf{=}& \mathbf{ (m-n)\left[ a + \left(\dfrac{b-a}{2}\right)( m+n-1 ) \right] } \\\\ 12a & = & (m-n)\left[ a + \left(\dfrac{b-a}{2}\right)( m+n-1 ) \right] \\\\ \dfrac{12a}{m-n} & = & a + \left(\dfrac{b-a}{2}\right)( m+n-1 ) \\\\ \dfrac{12a}{m-n} & = & a + \left(\dfrac{b}{2}\right)( m+n-1 )- \left(\dfrac{a}{2}\right)( m+n-1 ) \\\\ a\left( \dfrac{12}{m-n} - 1+ \dfrac{m+n-1}{2} \right) & = & b\left( \dfrac{m+n-1}{2} \right) \qquad m = 13 \qquad n = 3 \\\\ a\left( \dfrac{12}{10} - 1+ \dfrac{15}{2} \right) & = & b\left( \dfrac{15}{2} \right) \\\\ \dfrac{b}{a} &=& \left( \dfrac{2}{15} \right)\left( \dfrac{12}{10} - 1+ \dfrac{15}{2} \right) \\\\ &=& \left( \dfrac{2}{15} \right)\left( \dfrac{12-10+75}{10} \right) \\\\ &=& \dfrac{2\cdot 77}{150} \\\\ &=& \dfrac{2\cdot 77}{2\cdot 75} \\\\ \mathbf{\dfrac{b}{a}} &\mathbf{ =}& \mathbf{ \dfrac{77}{75}} \\ \hline \end{array} } \)

 

 

laugh

heureka  Feb 8, 2018
 #2
avatar
+2

12a = (m-n){a+1/2(m+n-1)(b-a)} , where m=13, n = 3

 

12a =(13 - 3)* [a + 1/2(13+3 -1)*(b -a)]

12a = 10*[a + 1/2(15)*(b - a)]

12a = 10*[a + 1/2(15b - 15a)]

12a = 10a + 5(15b - 15a)

12a = 10a + 75b - 75a

12a - 10a + 75a = 75b

77a = 75b

b =77a / 75, or

b/a = 77 / 75

Guest Feb 8, 2018

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details