+0  
 
0
279
2
avatar+642 

 

 

 

 

 

dont know how to solve this help is very appreciated

 Mar 29, 2019
 #1
avatar+5 
+1

Fomula for finding the \(n^{th}\) term of arithmetic sequence: \(a_n=a_1+(n−1)d\) (\(a_1\) is the first term, \(n\) is the term you want to find (eg for finding the \(7^{th}\) term, \(n\) would be \(7\)), and \(d\) is the common difference).

 

Formula for finding the sum of an arithmetic sequence: \(S_n=\dfrac{n(a_1 + a_n)}{2}\) (\(a_1\) is the first term, \(n\) is the number of terms, and \(a_n\) is the last term).

 

 

1)

 

So we find the last term with the first formula:

 

\(10 + (8-1)2\) \(=24\).

And the sum with the second formula:

 

\(\dfrac{8(10+24)}{2}=136\)

 

So the number of miles Mercedes will ride over the course of \(8\) weeks is \(\boxed{136}\)

 

---

 

2)

 

Likewise we can solve this one with the two formulas.

 

We find the \(7^{th}\) term with the first formula:

 

\(15+(7-1)3\) \(= 33\)

 

And the sum with the second formula:

 

\(\dfrac{7(15+33)}{2}=168\)

 

So the total number of logs in the stack is \(\boxed{168}\)

 

\(Q.E.D\)

 Mar 29, 2019
edited by applesoup  Mar 29, 2019
edited by applesoup  Mar 29, 2019
 #2
avatar
+1

Number of term =7
First term =15
Common difference =3
Sum =N/2 * [2*F + (N - 1) * D], where N=Number of terms, F=First term, D = Common difference.
Sum = 7/2 * [2*15 + (7 - 1) * 3]
         = 3.5 * [30    +  (6 * 3)    ]
         = 3.5 * [30 + 18]
         = 3.5 * 48
         =168 - Total number of logs in the stack. 

 Mar 30, 2019

20 Online Users

avatar
avatar
avatar
avatar
avatar
avatar