Let a1, a2, a3, ... be an arithmetic sequence. If a2/a4 = 3, what is a5/a3?
a1 = x
a2 = x + r
a3 = x + 2r
a4 = x + 3r
a5 = x + 4r
(x + r)/(x + 3r) = a2/a3
I don't think it's possible to figured out (x + 4r)/(x + 2r).
=^._.^=
a2 / a 4 = 3
So
a4/ a2 = 1/3
a4 = a2 / 3
a4 = a2 + 2d = a2 / 3
So
a2 + 2d = a2 / 3
2d = -(2/3)a2
d = -(1/3)a2
a3 = a2 + d = a2 - (1/3)a2 ) = (2/3)a2
a5 = a2 + 3d = a2 + 3( -(1/3)a2) = a2 - a2 = 0
So
a5 / a3 = 0
Let a1, a2, a3, ... be an arithmetic sequence.
If a2/a4 = 3, what is a5/a3?
\(\begin{array}{|rcll|} \hline \dfrac{a_2}{a_4} &=& 3 \\ a_2 &=& 3a_4 \\ a_1+d &=& 3(a_1+3d) \\ a_1 + d &=& 3a_1+9d \\ -2a_1 &=& 8d \\ \mathbf{a_1} &=& \mathbf{-4d} \\ \hline \dfrac{a_5}{a_3} &=& x \\ a_5 &=& x*a_3 \\ a_1+4d &=& x*a_3 \quad | \quad \mathbf{a_1=-4d} \\ -4d+4d &=& x*a_3 \\ 0 &=& x*a_3 \\ x &=& \dfrac{0}{a_3} \\ \mathbf{x} &=& \mathbf{0} \\ \hline \end{array}\)
\(\dfrac{a_5}{a_3} = 0\)