+0  
 
0
565
2
avatar

a22 = -49 and a25 = -58

Find a1

Guest Jun 17, 2015

Best Answer 

 #2
avatar+20025 
+10

$$\small{\text{$
\mathbf{
a_{22} = -49 \quad \mathrm{and} \quad a_{25}= -58 \quad \mathrm{find} \quad a_1
}
$}}$$

 

$$\mathbf{
\mathrm{Explicit~ Formula:}
& \quad a_n = a_1 + (n-1)\cdot d
} \\\\
\small{\text{$
\begin{array}{lrcl}
& a_{22} &=& a_1 + 21 \cdot d \\
& a_{25} &=& a_1 + 24 \cdot d \\
\\
\hline
\\
& a_{22} - a_1 &=& 21 \cdot d \\
& a_{25} - a_1 &=& 24 \cdot d \\
\\
\hline
\\
& \dfrac{ a_{22} - a_1 } { a_{25} - a_1 } &=& \dfrac{21} {24}\\ \\
& \dfrac{ a_{22} - a_1 } { a_{25} - a_1 } &=& \dfrac{7} {8}\\\\
& 8\cdot ( a_{22} - a_1 ) &=& 7\cdot ( a_{25} - a_1 )\\
& 8\cdot a_{22} - 8\cdot a_1 &=& 7\cdot a_{25} - 7\cdot a_1\\
& 8\cdot a_1 - 7\cdot a_1 &=& 8\cdot a_{22} - 7\cdot a_{25} \\
& \mathbf{a_1} &\mathbf{=}& \mathbf{8\cdot a_{22} - 7\cdot a_{25}} \\\\
& a_1 &=& 8\cdot (-49) - 7 \cdot (-58 ) \\
& a_1 &=& -392 + 406 \\
& \mathbf{a_1} &\mathbf{=}& \mathbf{14}
\end{array}
$}}$$

 

heureka  Jun 18, 2015
 #1
avatar+90023 
+5

-58 - (-49)  = -9     is the difference in these terms which seems to imply that  -9/3 = -3 is the common difference between terms

 

So......

 

-58  = a1 + d(n - 1)              

 

-58   = a1 - 3(25 - 1)

 

-58  = a1 - 72    add 72 to both sides

 

14  = a1

 

 

CPhill  Jun 18, 2015
 #2
avatar+20025 
+10
Best Answer

$$\small{\text{$
\mathbf{
a_{22} = -49 \quad \mathrm{and} \quad a_{25}= -58 \quad \mathrm{find} \quad a_1
}
$}}$$

 

$$\mathbf{
\mathrm{Explicit~ Formula:}
& \quad a_n = a_1 + (n-1)\cdot d
} \\\\
\small{\text{$
\begin{array}{lrcl}
& a_{22} &=& a_1 + 21 \cdot d \\
& a_{25} &=& a_1 + 24 \cdot d \\
\\
\hline
\\
& a_{22} - a_1 &=& 21 \cdot d \\
& a_{25} - a_1 &=& 24 \cdot d \\
\\
\hline
\\
& \dfrac{ a_{22} - a_1 } { a_{25} - a_1 } &=& \dfrac{21} {24}\\ \\
& \dfrac{ a_{22} - a_1 } { a_{25} - a_1 } &=& \dfrac{7} {8}\\\\
& 8\cdot ( a_{22} - a_1 ) &=& 7\cdot ( a_{25} - a_1 )\\
& 8\cdot a_{22} - 8\cdot a_1 &=& 7\cdot a_{25} - 7\cdot a_1\\
& 8\cdot a_1 - 7\cdot a_1 &=& 8\cdot a_{22} - 7\cdot a_{25} \\
& \mathbf{a_1} &\mathbf{=}& \mathbf{8\cdot a_{22} - 7\cdot a_{25}} \\\\
& a_1 &=& 8\cdot (-49) - 7 \cdot (-58 ) \\
& a_1 &=& -392 + 406 \\
& \mathbf{a_1} &\mathbf{=}& \mathbf{14}
\end{array}
$}}$$

 

heureka  Jun 18, 2015

14 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.