+0

# Artitmetic sequence question

+1
493
2
+117

In this particular arithmetic sequence, a8 = 28 and a16 = 108. What is the value of a24?

a24 = 188

a24 = 162

a24 = 198

a24 = 224

I know it's not B

failurewithasmile  Apr 14, 2017
#1
0

188    ...........

Guest Apr 14, 2017
#2
+17746
+3

The general formula is:  an  =  a1 + (n - 1)d

a8 = 28         --->     a8  =  a1 + (8 - 1)d        --->        28  =  a+ 7d

a16 = 108     --->     a16  =  a1 + (16 - 1)d     --->     108  =  a1 + 15d

Subtract down the columns:                                    -80  =        - 8d

--->          d  =  10

Substituting this value for d into the first equation:  28  =  a+ 7d

--->       28  =  a+ 7(10)

--->       28  =  a+ 70

--->        a1  =  -42

So the equation is:  an  =  -42 + (n - 1)(10)

To find a24, substitue 24 in for n and solve.

geno3141  Apr 14, 2017

### New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.