+0  
 
0
3
8373
1
avatar

At a country concert, the ratio of the number of boys to the number of girls is 2:7. If there are 250 more girls than boys, how many boys will be at the concert?

 Sep 27, 2014

Best Answer 

 #1
avatar+23252 
+5

A ratio can be expressed as a fraction.

Using 'g' to represent the number of girls and 'b' to represent the number of boys, the ration of boys to girls is b / g.

The ratio of boys to girls is 2:7 becomes:     b / g = 2 / 7

Since there are 250 more girls than boys:     g = 250 + b

Substituting the second equation into the first:     b / (250 + b) = 2 / 7

Cross multiply:      b · 7 = 2 · (250 + b)

Multiply out:          7b = 500 + 2b

Subtract:              5b = 500

Divide:                   b = 100             --->    g = 250 + b     --> g = 250 + 100     --->   g = 350

Check:      b / g = 2 / 7     --->     100 / 350  does reduce to 2 / 7.

 Sep 27, 2014
 #1
avatar+23252 
+5
Best Answer

A ratio can be expressed as a fraction.

Using 'g' to represent the number of girls and 'b' to represent the number of boys, the ration of boys to girls is b / g.

The ratio of boys to girls is 2:7 becomes:     b / g = 2 / 7

Since there are 250 more girls than boys:     g = 250 + b

Substituting the second equation into the first:     b / (250 + b) = 2 / 7

Cross multiply:      b · 7 = 2 · (250 + b)

Multiply out:          7b = 500 + 2b

Subtract:              5b = 500

Divide:                   b = 100             --->    g = 250 + b     --> g = 250 + 100     --->   g = 350

Check:      b / g = 2 / 7     --->     100 / 350  does reduce to 2 / 7.

geno3141 Sep 27, 2014

0 Online Users