We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1709
1
avatar+82 

Batches that consist of 50 coil springs from a production process are checked for conformance to customer requirements. The mean number of nonconforming coil springs in a batch is 5. Assume that the number of nonconforming springs in a batch, denoted as X, is a binomial random variable.

a. What are n and p?

b. What is P(X ≤ 2)?

c. What is P(X ≥ 49)?

 Nov 21, 2014

Best Answer 

 #1
avatar+17774 
+5

a)  n = number in the batch, so n = 50

     p = probability of non-conformance = 5/50  =  1/10

b)  P(X≤2)  =  P(X=0) + P(X=1) + P(X=2)

                 =  50nCr0·(1/10)^0·(9/10)·50 + 50nCr1·(1/10)^1·(9/10)·49 + 50nCr2·(1/10)^2·(9/10)·48  

                  =  0.112

c)  P(X≥49)  =   P(X=49) + P(X=50)

                  =  50nCr49·(1/10)^49·(9/10)·1 + 50nCr50·(1/10)^50·(9/10)·0

                  =  $.51 x 10^-48

 Nov 22, 2014
 #1
avatar+17774 
+5
Best Answer

a)  n = number in the batch, so n = 50

     p = probability of non-conformance = 5/50  =  1/10

b)  P(X≤2)  =  P(X=0) + P(X=1) + P(X=2)

                 =  50nCr0·(1/10)^0·(9/10)·50 + 50nCr1·(1/10)^1·(9/10)·49 + 50nCr2·(1/10)^2·(9/10)·48  

                  =  0.112

c)  P(X≥49)  =   P(X=49) + P(X=50)

                  =  50nCr49·(1/10)^49·(9/10)·1 + 50nCr50·(1/10)^50·(9/10)·0

                  =  $.51 x 10^-48

geno3141 Nov 22, 2014

23 Online Users

avatar