+0  
 
0
989
1
avatar+82 

Batches that consist of 50 coil springs from a production process are checked for conformance to customer requirements. The mean number of nonconforming coil springs in a batch is 5. Assume that the number of nonconforming springs in a batch, denoted as X, is a binomial random variable.

a. What are n and p?

b. What is P(X ≤ 2)?

c. What is P(X ≥ 49)?

yuhki  Nov 21, 2014

Best Answer 

 #1
avatar+17721 
+5

a)  n = number in the batch, so n = 50

     p = probability of non-conformance = 5/50  =  1/10

b)  P(X≤2)  =  P(X=0) + P(X=1) + P(X=2)

                 =  50nCr0·(1/10)^0·(9/10)·50 + 50nCr1·(1/10)^1·(9/10)·49 + 50nCr2·(1/10)^2·(9/10)·48  

                  =  0.112

c)  P(X≥49)  =   P(X=49) + P(X=50)

                  =  50nCr49·(1/10)^49·(9/10)·1 + 50nCr50·(1/10)^50·(9/10)·0

                  =  $.51 x 10^-48

geno3141  Nov 22, 2014
Sort: 

1+0 Answers

 #1
avatar+17721 
+5
Best Answer

a)  n = number in the batch, so n = 50

     p = probability of non-conformance = 5/50  =  1/10

b)  P(X≤2)  =  P(X=0) + P(X=1) + P(X=2)

                 =  50nCr0·(1/10)^0·(9/10)·50 + 50nCr1·(1/10)^1·(9/10)·49 + 50nCr2·(1/10)^2·(9/10)·48  

                  =  0.112

c)  P(X≥49)  =   P(X=49) + P(X=50)

                  =  50nCr49·(1/10)^49·(9/10)·1 + 50nCr50·(1/10)^50·(9/10)·0

                  =  $.51 x 10^-48

geno3141  Nov 22, 2014

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details