+0  
 
0
74
1
avatar+11847 

hey everyone, hows it going?

 

im having a really hard time doing this question, could anyone help...thanks in advance, i appreciate your hard  work!! 

 

smiley

 

find the constant term in the expansion of (1 + x )^10(1+ 1/x)^12

rosala  Mar 22, 2018

Best Answer 

 #1
avatar+19207 
+3

find the constant term in the expansion of (1 + x )^10(1+ 1/x)^12

 

\(\small{ \begin{array}{|rcll|} \hline && (1 + x )^{10} \left(1+ \dfrac{1}{x} \right)^{12} \\\\ &=& (1 + x )^{10}\left( \dfrac{1+x}{x} \right)^{12} \\\\ &=&\dfrac{(1 + x )^{10}(1 + x )^{12}}{x^{12}} \\\\ &=&\dfrac{(1 + x )^{22}}{x^{12}} \\\\ &=&\dfrac{ \binom{22}{0}x^0 +\binom{22}{1}x^1+ \binom{22}{2}x^2 + \ldots + \binom{22}{11}x^{11}+ \binom{22}{12}x^{12}+ \binom{22}{13}x^{13} + \ldots + \binom{22}{21}x^{21}+ \binom{22}{22}x^{22} }{x^{12}} \\\\ &=& \binom{22}{0}x^{-12} +\binom{22}{1}x^{-11}+ \binom{22}{2}x^{-10} + \ldots + \binom{22}{11}x^{-1}+\binom{22}{12}+ \binom{22}{13}x^{1} + \ldots + \binom{22}{21}x^{9}+ \binom{22}{22}x^{10} \\ \hline \end{array} }\)

 

The constant term is:

\(\begin{array}{|rcll|} \hline && \dbinom{22}{12} \\\\ &=& \dbinom{22}{22-12}\\ \\ &=& \dbinom{22}{10} \\\\ &\mathbf{=}& \mathbf{646646} \\ \hline \end{array}\)

 

 

laugh

heureka  Mar 22, 2018
edited by heureka  Mar 22, 2018
edited by heureka  Mar 22, 2018
Sort: 

1+0 Answers

 #1
avatar+19207 
+3
Best Answer

find the constant term in the expansion of (1 + x )^10(1+ 1/x)^12

 

\(\small{ \begin{array}{|rcll|} \hline && (1 + x )^{10} \left(1+ \dfrac{1}{x} \right)^{12} \\\\ &=& (1 + x )^{10}\left( \dfrac{1+x}{x} \right)^{12} \\\\ &=&\dfrac{(1 + x )^{10}(1 + x )^{12}}{x^{12}} \\\\ &=&\dfrac{(1 + x )^{22}}{x^{12}} \\\\ &=&\dfrac{ \binom{22}{0}x^0 +\binom{22}{1}x^1+ \binom{22}{2}x^2 + \ldots + \binom{22}{11}x^{11}+ \binom{22}{12}x^{12}+ \binom{22}{13}x^{13} + \ldots + \binom{22}{21}x^{21}+ \binom{22}{22}x^{22} }{x^{12}} \\\\ &=& \binom{22}{0}x^{-12} +\binom{22}{1}x^{-11}+ \binom{22}{2}x^{-10} + \ldots + \binom{22}{11}x^{-1}+\binom{22}{12}+ \binom{22}{13}x^{1} + \ldots + \binom{22}{21}x^{9}+ \binom{22}{22}x^{10} \\ \hline \end{array} }\)

 

The constant term is:

\(\begin{array}{|rcll|} \hline && \dbinom{22}{12} \\\\ &=& \dbinom{22}{22-12}\\ \\ &=& \dbinom{22}{10} \\\\ &\mathbf{=}& \mathbf{646646} \\ \hline \end{array}\)

 

 

laugh

heureka  Mar 22, 2018
edited by heureka  Mar 22, 2018
edited by heureka  Mar 22, 2018

34 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details