We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
170
2
avatar

Find the remainder when  6701^83 is divided by 1000.
 

 

How would I use the binomial theorem to get the answer of this question?

 Mar 10, 2019
edited by Guest  Mar 10, 2019
 #1
avatar+6046 
+1

\(6701^{83} = \sum \limits_{k=0}^{83} ~\dbinom{83}{k} (6000)^{k}(701)^{83-k}\\ \text{It should be clear that all terms but 1, }k=0 \text{ are divisible by }1000\\ \text{we are then left with }\\ (701)^{83} = \sum \limits_{k=0}^{83}\dbinom{83}{k}(700)^k\\ \text{here there are two terms that are not divisible by }1000,~k=0,1\\ (701)^{83}\pmod{1000} = \\ 1+83(700) \pmod{1000} = \\ 1 + (80+3)(700) \pmod{1000}= \\ 1+ 56000+ 2100 \pmod{1000} = \\ 2101 \pmod{1000} = 101\)

.
 Mar 10, 2019
edited by Rom  Mar 10, 2019
 #2
avatar+105327 
0

Binomial Expansion  approach

 

(6701)^83  =  

 

(6700 + 1)^83  =  6700^83  + C(83,1)*6700^82 +  ...+ C(83,81)*6700^2 + C(83,82)*6700 + 1

 

Note that every term in red will have at least 4 trailing zeros, so  each of these terms is divisible by 1000

 

So....we only need consider the last two terms

 

C(83, 82) * 6700  +  1     =

 

83 * (6700)  + 1  =

 

(80 + 3) * (6700)  + 1 =

 

80*6700 + 3*6700  + 1 

 

The first term  will have 3 trailing zeros, so....it is divisible  by 1000....and

 

3 * 6700 + 1 = 20100  + 1 =  20(1000) +  100  +  1

 

So  we have  left

 

 [ 100 + 1 ] / 1000   ⇒    remainder 101

 

 

cool coolcool

 Mar 11, 2019

32 Online Users

avatar