+0  
 
+5
468
1
avatar+1068 

I'm sorry, but this is the wrong question. The 'right'() question is here:>

http://web2.0calc.com/questions/both-circles-have-the-same-radius-nbsp-r-1-nbsp-if-area-nbsp-a-nbsp-area-nbsp-b-nbsp-area-nbsp-c-what-is-the-distance-between-the

 

Image result for overlapping circles area

civonamzuk  May 21, 2015

Best Answer 

 #1
avatar+19653 
+13

Both circles have a radius  r=1.  Can you make these 3 regions,  A  B  and  C, to occupy the equal areas ?

$$\small{\text{$
\rm{central~angle}= \varphi_\rm{rad}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\rm{area}_B &=&
2\cdot\left[
\pi r^2 \cdot \frac{\varphi_{\rm{rad}} }{2\pi} - \frac{1}{2} \cdot r^2 \sin{(\varphi_{\rm{rad}} )}
\right] \\
\rm{area}_A &=& \rm{area}_B=\rm{area}_C\\\\
\rm{area}_{circle_1} = \rm{area}_{circle_2} &=& \pi r^2\\
\rm{area}_{circle_1} - \rm{area}_B &=& \rm{area}_B \\
\rm{area}_{circle_1} &=& 2\cdot \rm{area}_B \\
\pi r^2 &=& 2\cdot \rm{area}_B \\
\pi r^2 &=& 2\cdot 2\cdot\left[
\pi r^2 \cdot \frac{\varphi_{\rm{rad}} }{2\pi} - \frac{1}{2} \cdot r^2 \sin{(\varphi_{\rm{rad}} )} \right] \\
\pi r^2 &=& 2\cdot r^2 \cdot \varphi_{\rm{rad}}
- 2 \cdot r^2 \cdot
\sin{ ( \varphi_{\rm{rad}} ) } \qquad | \qquad : r^2\\
\pi &=& 2 \cdot \varphi_{\rm{rad}} - 2 \cdot \sin{ ( \varphi_{\rm{rad}} ) } \qquad | \qquad : 2\\
\frac{\pi}{2} &=& \varphi_{\rm{rad}} - \sin{ ( \varphi_{\rm{rad}} ) } \\\\
\end{array}
$}}$$

$$\boxed{
\varphi_{\rm{rad}} - \sin{ ( \varphi_{\rm{rad}} ) } = \frac{\pi}{2}
}$$

The Newton-Raphson method in one variable is implemented as follows:


Given a function ƒ defined over the reals x, and its derivative ƒ',

we begin with a first guess x0 for a root of the function f.

Provided the function satisfies all the assumptions made in the derivation of the formula,

a better approximation x1 is

$$\small{\text{
$
x_{1} = x_0 - \frac{f(x_0)}{f'(x_0)} \,$.
}}$$

$$\varphi_{\rm{rad}_1} =
\varphi_{\rm{rad}_0} - \dfrac{ \varphi_{\rm{rad}_0} -\sin{ ( \varphi_{\rm{rad}_0} ) } - \frac{\pi}{2}
}
{1-\cos{ (\varphi_{\rm{rad}_0}) } }$$

Iteration:

$$\small{\text{$
\begin{array}{rcl}
\varphi_{\rm{rad}_0} &=& 2\\
\varphi_{\rm{rad}_1} &=& 2.33901410590 \\
\varphi_{\rm{rad}_2} &=& 2.31006319657 \\
\varphi_{\rm{rad}_3} &=& 2.30988146730 \\
\varphi_{\rm{rad}_4} &=& 2.30988146001 \\
\cdots \\
\varphi_{\rm{rad}} = 2.30988146001 \\
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\rm{area}_B &=&
2\cdot\left[
\pi r^2 \cdot \frac{\varphi_\rm{rad} }{2\pi} - \frac{1}{2} \cdot r^2 \sin{(\varphi_\rm{rad} )}
\right] \qquad | \qquad r=1 \\
\rm{area}_B &=&
2\cdot\left[
\pi \cdot \frac{\varphi_{\rm{rad}} }{2\pi} - \frac{1}{2} \cdot \sin{(\varphi_{\rm{rad}} )}
\right] \\
\rm{area}_B &=& \varphi_{\rm{rad}} - \sin{(\varphi_{\rm{rad}} )} \\\\
\rm{area}_B = 2.30988146001 -\sin{ ( 2.30988146001 )} &=& \frac{\pi}{2}\\
\rm{area}_A = \rm{area}_C &=& \pi r^2 - \rm{area}_B
\qquad | \qquad r=1 \\
\rm{area}_A = \rm{area}_C &=& \pi - \frac{\pi}{2} = \frac{\pi}{2}
\end{array}
$}}$$

heureka  May 21, 2015
 #1
avatar+19653 
+13
Best Answer

Both circles have a radius  r=1.  Can you make these 3 regions,  A  B  and  C, to occupy the equal areas ?

$$\small{\text{$
\rm{central~angle}= \varphi_\rm{rad}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\rm{area}_B &=&
2\cdot\left[
\pi r^2 \cdot \frac{\varphi_{\rm{rad}} }{2\pi} - \frac{1}{2} \cdot r^2 \sin{(\varphi_{\rm{rad}} )}
\right] \\
\rm{area}_A &=& \rm{area}_B=\rm{area}_C\\\\
\rm{area}_{circle_1} = \rm{area}_{circle_2} &=& \pi r^2\\
\rm{area}_{circle_1} - \rm{area}_B &=& \rm{area}_B \\
\rm{area}_{circle_1} &=& 2\cdot \rm{area}_B \\
\pi r^2 &=& 2\cdot \rm{area}_B \\
\pi r^2 &=& 2\cdot 2\cdot\left[
\pi r^2 \cdot \frac{\varphi_{\rm{rad}} }{2\pi} - \frac{1}{2} \cdot r^2 \sin{(\varphi_{\rm{rad}} )} \right] \\
\pi r^2 &=& 2\cdot r^2 \cdot \varphi_{\rm{rad}}
- 2 \cdot r^2 \cdot
\sin{ ( \varphi_{\rm{rad}} ) } \qquad | \qquad : r^2\\
\pi &=& 2 \cdot \varphi_{\rm{rad}} - 2 \cdot \sin{ ( \varphi_{\rm{rad}} ) } \qquad | \qquad : 2\\
\frac{\pi}{2} &=& \varphi_{\rm{rad}} - \sin{ ( \varphi_{\rm{rad}} ) } \\\\
\end{array}
$}}$$

$$\boxed{
\varphi_{\rm{rad}} - \sin{ ( \varphi_{\rm{rad}} ) } = \frac{\pi}{2}
}$$

The Newton-Raphson method in one variable is implemented as follows:


Given a function ƒ defined over the reals x, and its derivative ƒ',

we begin with a first guess x0 for a root of the function f.

Provided the function satisfies all the assumptions made in the derivation of the formula,

a better approximation x1 is

$$\small{\text{
$
x_{1} = x_0 - \frac{f(x_0)}{f'(x_0)} \,$.
}}$$

$$\varphi_{\rm{rad}_1} =
\varphi_{\rm{rad}_0} - \dfrac{ \varphi_{\rm{rad}_0} -\sin{ ( \varphi_{\rm{rad}_0} ) } - \frac{\pi}{2}
}
{1-\cos{ (\varphi_{\rm{rad}_0}) } }$$

Iteration:

$$\small{\text{$
\begin{array}{rcl}
\varphi_{\rm{rad}_0} &=& 2\\
\varphi_{\rm{rad}_1} &=& 2.33901410590 \\
\varphi_{\rm{rad}_2} &=& 2.31006319657 \\
\varphi_{\rm{rad}_3} &=& 2.30988146730 \\
\varphi_{\rm{rad}_4} &=& 2.30988146001 \\
\cdots \\
\varphi_{\rm{rad}} = 2.30988146001 \\
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\rm{area}_B &=&
2\cdot\left[
\pi r^2 \cdot \frac{\varphi_\rm{rad} }{2\pi} - \frac{1}{2} \cdot r^2 \sin{(\varphi_\rm{rad} )}
\right] \qquad | \qquad r=1 \\
\rm{area}_B &=&
2\cdot\left[
\pi \cdot \frac{\varphi_{\rm{rad}} }{2\pi} - \frac{1}{2} \cdot \sin{(\varphi_{\rm{rad}} )}
\right] \\
\rm{area}_B &=& \varphi_{\rm{rad}} - \sin{(\varphi_{\rm{rad}} )} \\\\
\rm{area}_B = 2.30988146001 -\sin{ ( 2.30988146001 )} &=& \frac{\pi}{2}\\
\rm{area}_A = \rm{area}_C &=& \pi r^2 - \rm{area}_B
\qquad | \qquad r=1 \\
\rm{area}_A = \rm{area}_C &=& \pi - \frac{\pi}{2} = \frac{\pi}{2}
\end{array}
$}}$$

heureka  May 21, 2015

5 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.