+0  
 
0
100
1
avatar

Calculate points of intersection of the following two pairs of equations. 

y=5x+6  and  y=9x-32 

y=-0,5x+1,5  and  y=-4(x-3) 

Guest Feb 1, 2018

Best Answer 

 #1
avatar+12561 
+2

We need the point(s) where   y = 5x+6    equals  y = 9x-32    

     or    5x+6 = 9x-32       solve for x     add 32 to each side of the equation

            5x+38 = 9x           subtract 5x from both sides

                  38 = 4 x

                    9.5 = x           Now substitute theis 'x' into one of the equations to find 'y'

          y= 5(9.5) +6        y= 53.5      so   x,y  =  9.5 , 53.5   

  (you can sub 'x' in to the other equation to see if you get the same result as a check)

 

0.5x+1.5= -4(x-3)

                = -4x +12       add 4x to both sides

4.5x +1.5 =12                 Subtract 1.5 from both sides

4.5x = 10.5                      Divide by 4.5

x = 2 1/3

then sub  this 'x' in to one of the other equations to find 'y'

y=-4(x-3)=-4x+12

 = -4 (2 1/3) + 12 = 2 2/3       x,y = 2 1/3 , 2 2/3           

ElectricPavlov  Feb 1, 2018
edited by ElectricPavlov  Feb 1, 2018
 #1
avatar+12561 
+2
Best Answer

We need the point(s) where   y = 5x+6    equals  y = 9x-32    

     or    5x+6 = 9x-32       solve for x     add 32 to each side of the equation

            5x+38 = 9x           subtract 5x from both sides

                  38 = 4 x

                    9.5 = x           Now substitute theis 'x' into one of the equations to find 'y'

          y= 5(9.5) +6        y= 53.5      so   x,y  =  9.5 , 53.5   

  (you can sub 'x' in to the other equation to see if you get the same result as a check)

 

0.5x+1.5= -4(x-3)

                = -4x +12       add 4x to both sides

4.5x +1.5 =12                 Subtract 1.5 from both sides

4.5x = 10.5                      Divide by 4.5

x = 2 1/3

then sub  this 'x' in to one of the other equations to find 'y'

y=-4(x-3)=-4x+12

 = -4 (2 1/3) + 12 = 2 2/3       x,y = 2 1/3 , 2 2/3           

ElectricPavlov  Feb 1, 2018
edited by ElectricPavlov  Feb 1, 2018

5 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.