+0  
 
0
207
2
avatar

Given that z=-√2-√2i, calculate z^8.

Guest Mar 18, 2015

Best Answer 

 #1
avatar+18843 
+10

Given that z=-√2-√2i, calculate z^8

$$\small{\text{
$z= -\sqrt2-\sqrt2\cdot i \qquad
\boxed{z= -\sqrt2\cdot (1+i)}
$}}\\\\
\small{\text{
$
z^8 = \left[-\sqrt2 \cdot(1+i) \right] ^8
$}}\\
\small{\text{
$
z^8 = (-\sqrt2)^8\cdot (1+i)^8
$
}} \\
\small{\text{
$
z^8 = (-1)^8\cdot 2^{\frac82}\cdot (1+i)^8
$
}} \\
\small{\text{
$ z^8 = 1\cdot 2^4\cdot (1+i)^8 $
}} \\
\small{\text{
$
\begin{array}{l|l|l}
z^8 = 2^4\cdot (1+i)^8 \quad & \quad (1+i)^2 =1+2\cdot i+ i^2 \quad & \quad \boxed{\ i^2=-1 \ } \\
& \quad (1+i)^2 = 1+2\cdot i -1 \\
& \quad (1+i)^2 = 2\cdot i \\
z^8 = 2^4 \cdot \left[(1+i)^2\right]^4 \\
z^8 = 2^4 \cdot \left[ 2\cdot i\right]^4 \\
z^8 = 2^4 \cdot 2^4 \cdot i^4 \\
z^8 = 2^8\cdot i^4 \quad & \quad i^4=i^2\cdot i^2\\
& \quad i^4=(-1)\cdot (-1)\\
& \quad i^4 = (-1)^2 \\
& \quad i^4 = 1 \\
\boxed{\ z^8 = 2^8 = 256 \ }
\end{array}
$
}} \\$$

heureka  Mar 18, 2015
Sort: 

2+0 Answers

 #1
avatar+18843 
+10
Best Answer

Given that z=-√2-√2i, calculate z^8

$$\small{\text{
$z= -\sqrt2-\sqrt2\cdot i \qquad
\boxed{z= -\sqrt2\cdot (1+i)}
$}}\\\\
\small{\text{
$
z^8 = \left[-\sqrt2 \cdot(1+i) \right] ^8
$}}\\
\small{\text{
$
z^8 = (-\sqrt2)^8\cdot (1+i)^8
$
}} \\
\small{\text{
$
z^8 = (-1)^8\cdot 2^{\frac82}\cdot (1+i)^8
$
}} \\
\small{\text{
$ z^8 = 1\cdot 2^4\cdot (1+i)^8 $
}} \\
\small{\text{
$
\begin{array}{l|l|l}
z^8 = 2^4\cdot (1+i)^8 \quad & \quad (1+i)^2 =1+2\cdot i+ i^2 \quad & \quad \boxed{\ i^2=-1 \ } \\
& \quad (1+i)^2 = 1+2\cdot i -1 \\
& \quad (1+i)^2 = 2\cdot i \\
z^8 = 2^4 \cdot \left[(1+i)^2\right]^4 \\
z^8 = 2^4 \cdot \left[ 2\cdot i\right]^4 \\
z^8 = 2^4 \cdot 2^4 \cdot i^4 \\
z^8 = 2^8\cdot i^4 \quad & \quad i^4=i^2\cdot i^2\\
& \quad i^4=(-1)\cdot (-1)\\
& \quad i^4 = (-1)^2 \\
& \quad i^4 = 1 \\
\boxed{\ z^8 = 2^8 = 256 \ }
\end{array}
$
}} \\$$

heureka  Mar 18, 2015
 #2
avatar
+5

A general rule when working with complex numbers is , for addition and subtraction use the algebraic form of the number, for multiplication powers and roots use the polar or exponential form.

So, first putting the number into polar form,

$$-\sqrt{2}-\imath\sqrt{2}=-2(1/\sqrt{2}+\imath/\sqrt{2})=-2\angle45\deg$$

and now raising to the power eight using De Moivre's theorem,

$$(-2\angle45\deg)^{8}=(-2)^{8}\angle(8\times45\deg)=256\angle360\deg=256.$$

Guest Mar 18, 2015

32 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details