I'm sort of stuck on this one.
An airplane is flying toward an observer at an altitude of 5km. Its speed is 600km/h. Find the rates at which the angle of elevation, \( \theta \), is changing when the angle is equal to 30°.
Hi LambLamb,
I am assuming that you are on the ground and that the plane is flying in your compas direction but that it ia maintainng a height of 5km
\(\frac{d\theta}{dt}=\frac{d\theta}{dx}\times \frac{dx}{dt}\\ \text{now }\frac{dx}{dt} \text{ is the velocity of the plane so it equals 600km/hour so}\\ \frac{d\theta}{dt}=\frac{d\theta}{dx}\times -600\\~\\ \)
At any point in time,
\(sin\theta=\frac{height\; of \;plane}{x}\\ sin\theta=\frac{5}{x}\\ x=\frac{5}{sin\theta}\qquad \text{except when }sin\theta =0\\ x=5*({sin\theta})^{-1}\\ \frac{dx}{d\theta}=-5(sin\theta)^{-2}*cos\theta\\ \frac{dx}{d\theta}=\frac{-5cos\theta}{(sin\theta)^2}\\ \frac{d\theta}{dx}=\frac{-(sin\theta)^2}{5cos\theta}\\\)
SO
\(\frac{d\theta}{dt}=\frac{d\theta}{dx}*-600\\ \frac{d\theta}{dt}=\frac{-(sin\theta)^2}{5cos\theta}*-600\\ When\;\theta=30^\circ\\ \frac{d\theta}{dt}=[-(sin30^\circ)^2 \div 5cos30^\circ]*-600\\ \frac{d\theta}{dt}=[\frac{-1}{4} \div \frac{5\sqrt3}{2}]*-600\\ \frac{d\theta}{dt}=[\frac{-1}{4} \times \frac{2}{5\sqrt3}]*-600\\ \frac{d\theta}{dt}=[ \frac{-1}{10\sqrt3}]*-600\\ \frac{d\theta}{dt}= \frac{60}{\sqrt3}\;degrees/ hour\\ \frac{d\theta}{dt}=\frac{1}{\sqrt3}\;degrees/ minute\\\)
1 /sqrt(3) = 0.5773502691896258
When the angle ofelevation is 30 degrees it (the angle) is increasing at the rate of approx 0.577 degrees per minute