+0  
 
0
994
3
avatar+495 

I'm sort of stuck on this one.

 

An airplane is flying toward an observer at an altitude of 5km. Its speed is 600km/h. Find the rates at which the angle of elevation, \( \theta \), is changing when the angle is equal to 30°.

 Oct 13, 2016
 #1
avatar
0

im preety sure there is no answer to this :(

 Oct 13, 2016
 #2
avatar+118673 
+5

Hi LambLamb,

I am assuming that you are on the ground and that the plane is flying in your compas direction but that it ia maintainng a height of 5km

 

\(\frac{d\theta}{dt}=\frac{d\theta}{dx}\times \frac{dx}{dt}\\ \text{now }\frac{dx}{dt} \text{ is the velocity of the plane so it equals 600km/hour so}\\ \frac{d\theta}{dt}=\frac{d\theta}{dx}\times -600\\~\\ \)

At any point in time,  

 

\(sin\theta=\frac{height\; of \;plane}{x}\\ sin\theta=\frac{5}{x}\\ x=\frac{5}{sin\theta}\qquad \text{except when }sin\theta =0\\ x=5*({sin\theta})^{-1}\\ \frac{dx}{d\theta}=-5(sin\theta)^{-2}*cos\theta\\ \frac{dx}{d\theta}=\frac{-5cos\theta}{(sin\theta)^2}\\ \frac{d\theta}{dx}=\frac{-(sin\theta)^2}{5cos\theta}\\\)

 

SO

\(\frac{d\theta}{dt}=\frac{d\theta}{dx}*-600\\ \frac{d\theta}{dt}=\frac{-(sin\theta)^2}{5cos\theta}*-600\\ When\;\theta=30^\circ\\ \frac{d\theta}{dt}=[-(sin30^\circ)^2 \div 5cos30^\circ]*-600\\ \frac{d\theta}{dt}=[\frac{-1}{4} \div \frac{5\sqrt3}{2}]*-600\\ \frac{d\theta}{dt}=[\frac{-1}{4} \times \frac{2}{5\sqrt3}]*-600\\ \frac{d\theta}{dt}=[ \frac{-1}{10\sqrt3}]*-600\\ \frac{d\theta}{dt}= \frac{60}{\sqrt3}\;degrees/ hour\\ \frac{d\theta}{dt}=\frac{1}{\sqrt3}\;degrees/ minute\\\)

 

1 /sqrt(3) = 0.5773502691896258

 

When the angle ofelevation is 30 degrees it (the angle) is increasing at the rate of approx 0.577 degrees per minute 

 Oct 13, 2016
 #3
avatar+495 
0

Thank you so much, Melody. This answer is perfect. I forgot to mention the altitude remains constant and dx/dt is in fact -600km/h, but you safely assumed those.

 Oct 22, 2016

4 Online Users

avatar