Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+19
1149
10
avatar+118703 

Calculus challenge.  

 

Differential equation.

 

This is not a question that I need an answer for it is just a challenge :)

 

Solve:

y2y+y=(x2+1)ex

 

 

 

Big Hint:

The solution will be of the from   

y=(Ax4+Bx3+Cx2)ex Where A,B and C are constants.

 

 

 

Have Fun :D

 Dec 6, 2016

Best Answer 

 #6
avatar+118703 
+10

Thank you Alan,  I shall study your solution,   smiley

 

Here is my solution:

 

Solve:

y2y+y=(x2+1)ex

 

Big Hint:

The solution will be of the from  

y=(Ax4+Bx3+Cx2)ex Where A,B and C are constants.

 

 

y=(Ax4+Bx3+Cx2)ex y=[Ax4+(4A+B)x3+(3B+C)x2+2Cx]ex y=[Ax4+(4A+4A+B)x3+(12A+3B+3B+C)x2+(6B+2C+2C)x+2C]exy=[Ax4+(8A+B)x3+(12A+6B+C)x2+(6B+4C)x+2C]ex y2y+y=ex[Ax4+(8A+B)x3+(12A+6B+C)x2+(6B+4C)x+2C+(2A)x4+(8A2B)x3+(6B2C)x2+(4C)x+Ax4+Bx3+Cx2] =ex[0x4+0x3+12Ax2+6Bx+2C] soy2y+y=ex[12Ax2+6Bx+2C] 

[12Ax2+6Bx+2C]ex=(x2+1)ex 12A=16B=02C=1A=112B=0C=12 soify2y+y=(x2+1)extheny=(x412+x22)ex

 Dec 7, 2016
 #2
avatar+33654 
+5

Alternative hint:  First multiply through by e-x then make the substituion z = ye-x

 

.

 Dec 6, 2016
 #3
avatar
+5

y = c1ex + c2xex + x2ex/2 + x4ex/12

 

and now one for you Moderators....

Solve this simple ODE...

 

y''+ e-axy = 0   with y(0) = 0, y'(0) = 1

 

This has an exact analytical solution - so don't believe all the software that says it doesn't.  Good luck. smiley

 Dec 6, 2016
 #4
avatar
+5

y''-2y'+y=(x^2+1)e^x

 

Using LaPLace Transform, you get this answer!!:

y(x) = c_2 e^x x + c_1 e^x + (e^x x^4)/12 + (e^x x^2)/2

 Dec 6, 2016
 #5
avatar+33654 
+10

Here's my worked solution:

 

.

 Dec 7, 2016
 #6
avatar+118703 
+10
Best Answer

Thank you Alan,  I shall study your solution,   smiley

 

Here is my solution:

 

Solve:

y2y+y=(x2+1)ex

 

Big Hint:

The solution will be of the from  

y=(Ax4+Bx3+Cx2)ex Where A,B and C are constants.

 

 

y=(Ax4+Bx3+Cx2)ex y=[Ax4+(4A+B)x3+(3B+C)x2+2Cx]ex y=[Ax4+(4A+4A+B)x3+(12A+3B+3B+C)x2+(6B+2C+2C)x+2C]exy=[Ax4+(8A+B)x3+(12A+6B+C)x2+(6B+4C)x+2C]ex y2y+y=ex[Ax4+(8A+B)x3+(12A+6B+C)x2+(6B+4C)x+2C+(2A)x4+(8A2B)x3+(6B2C)x2+(4C)x+Ax4+Bx3+Cx2] =ex[0x4+0x3+12Ax2+6Bx+2C] soy2y+y=ex[12Ax2+6Bx+2C] 

[12Ax2+6Bx+2C]ex=(x2+1)ex 12A=16B=02C=1A=112B=0C=12 soify2y+y=(x2+1)extheny=(x412+x22)ex

Melody Dec 7, 2016
 #7
avatar+118703 
0

Hi guest/s

Thanks for your participation here :)     laugh

 

I shall look at your solution and your new question too :)

I might take a while to get too it but I will  :))       laugh

 Dec 7, 2016
 #8
avatar+33654 
+5

You will need to become pretty familiar with Bessel functions to answer Guest #3's new question Melody!  I suggest you just enter it into WolframAlpha.

Alan  Dec 7, 2016
 #9
avatar+118703 
0

Thanks Alan,

I might just do that - does sound rather like cheating though   laughfrowncool

Melody  Dec 7, 2016
 #10
avatar
+10

D operators work well for the first equation.

 

y2y+y=(x2+1)ex

so the equation becomes

D2y2Dy+y=(x2+1)ex,

(D22D+1)y=(x2+1)ex,

y=1(D1)2ex(x2+1)=ex1D2(x2+1)=ex(x412+x22+Ax+B),

where A and B are arbitrary constants.

 

Tiggsy

 Dec 7, 2016

3 Online Users

avatar
avatar