We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
168
1
avatar

1. 

 

If \(f(x)=x^2\ \text{and} \ g(x)=\ln(x),\ \text{compute}\ f'(1) + g'(1)\)

 

2. \(\int_0^4\frac{dx}{\sqrt{|x-2|}}\)

 Jun 5, 2018
 #1
avatar+974 
+1

\(1. \text{If}\ f(x) = x^2\ \text{and}\ g(x)=\ln(x), \text{compute } f'(1) + g'(1)\)

 

\(\text{We compute}\ f'(x) = 2x\ \text{and}\ g'(x)=\frac1x,\ \text{so plugging in 1 for both gives us}\ \boxed3. \)

 

\(2. \int_0^4\frac{dx}{\sqrt{|x-2|}}\)

 

\(\text{Since the function } \sqrt{|x-2|}\text{ discontinues at } x=2,\\ \text{we can split the integral into two parts and compute separately.}\)

 

\(\int_0^2\frac{dx}{\sqrt{|x-2|}}=\int_0^2\frac{dx}{\sqrt{2-x}}=-2\sqrt{2-x}|_0^2=2\sqrt2\)

\(\int_2^4\frac{dx}{\sqrt{|x-2|}}=\int_2^4\frac{dx}{\sqrt{x-2}}=2\sqrt{x-2}|_4^2=2\sqrt2\)

 

\(2\sqrt2+2\sqrt2=\boxed{4\sqrt2}\)

 

laughlaughlaugh

 Jun 5, 2018
edited by GYanggg  Jun 5, 2018

2 Online Users