+0  
 
0
963
15
avatar

 

Can you give me a step by step explanation on how to solve this please.

 

Thank you!

 Sep 12, 2016

Best Answer 

 #14
avatar+33661 
+5

Have a look at this Youtube video:  https://www.youtube.com/watch?v=bYZWW0fSLJU 

 Sep 12, 2016
 #1
avatar+51 
0

for a problem like this( limit to infinity) plug in a random nember and determine whether its a positive or negative. the awnser for this problem is positve infinity since (((9(1)^2)+(1))^1/2)-3(1) is positive

 Sep 12, 2016
 #2
avatar
+5

Find the following limit:
lim_(x->∞) (sqrt(9 x^2+x)-3 x)

sqrt(9 x^2+x)-3 x = (3 x+sqrt(9 x^2+x))/(3 x+sqrt(9 x^2+x)) (sqrt(9 x^2+x)-3 x) = x/(3 x+sqrt(9 x^2+x)):
lim_(x->∞) x/(3 x+sqrt(9 x^2+x))

Write x/(3 x+sqrt(9 x^2+x)) as 1/(3+sqrt(9 x^2+x)/x):
lim_(x->∞) 1/(3+sqrt(9 x^2+x)/x)

Using the reciprocal rule, write lim_(x->∞) 1/(3+sqrt(9 x^2+x)/x) as 1/(lim_(x->∞) (3+sqrt(9 x^2+x)/x)):
1/(lim_(x->∞) (3+sqrt(9 x^2+x)/x))

lim_(x->∞) (3+sqrt(9 x^2+x)/x) = lim_(x->∞) 3+lim_(x->∞) sqrt(9 x^2+x)/x:
1/(lim_(x->∞) 3+lim_(x->∞) sqrt(9 x^2+x)/x)

Since 3 is constant, lim_(x->∞) 3 = 3:
1/(3+lim_(x->∞) sqrt(9 x^2+x)/x)

Simplify radicals, sqrt(9 x^2+x)/x = sqrt((9 x^2+x)/x^2):
1/(3+lim_(x->∞) sqrt((9 x^2+x)/x^2))

Using the power rule, write lim_(x->∞) sqrt((9 x^2+x)/x^2) as sqrt(lim_(x->∞) (9 x^2+x)/x^2):
1/(3+sqrt(lim_(x->∞) (9 x^2+x)/x^2))

The leading term in the denominator of (9 x^2+x)/x^2 is x^2. Divide the numerator and denominator by this:
1/(3+sqrt(lim_(x->∞) (9+1/x)/1))

The expression 1/x tends to zero as x approaches ∞:
1/(3+sqrt(9))

1/(3+sqrt(9)) = 1/6:
Answer: |1/6

 Sep 12, 2016
 #3
avatar+118687 
0

Thanks Guest

 

I learned from your answer   :)

 

I will just rewrite your answer in LaTex

 

\(\displaystyle\lim_{x\rightarrow \infty} \;\sqrt{9x^2+x}-3x\\ =\displaystyle\lim_{x\rightarrow \infty} \;\frac{\sqrt{9x^2+x}-3x}{1}\times\frac{\sqrt{9x^2+x}+3x}{\sqrt{9x^2+x}+3x}\\ =\displaystyle\lim_{x\rightarrow \infty} \;\frac{(9x^2+x)-9x^2}{\sqrt{9x^2+x}+3x}\\ =\displaystyle\lim_{x\rightarrow \infty} \;\frac{x}{\sqrt{9x^2+x}+3x}\\ =\displaystyle\lim_{x\rightarrow \infty} \;\frac{x\div x}{(\sqrt{9x^2+x}+3x)\div x}\\ =\displaystyle\lim_{x\rightarrow \infty} \;\frac{1}{\sqrt{\frac{9x^2+x}{x^2}}+3}\\ =\displaystyle\lim_{x\rightarrow \infty} \;\frac{1}{\sqrt{9+\frac{1}{x}}+3}\\ =\frac{1}{\sqrt{9+0}+3}\\ =3+3\\ =6 \)

 Sep 12, 2016
 #4
avatar
+5

Thank you so much. It makes sense now

 Sep 12, 2016
 #5
avatar+118687 
0

Well there you go, we both learned something.   laugh

 

If you sign up your get higher priority with answerers.

I know you were answered quicklly this time but it doesn'ty always work that way. :)

Melody  Sep 12, 2016
 #6
avatar+33661 
0

Here's an alternative approach:

 

.

 Sep 12, 2016
 #7
avatar+118687 
0

Alan,

How did you go from the second line to the third line?

 Sep 12, 2016
 #10
avatar+33661 
0

Oops, sorry, I should have put in more explanation:

 

.

Hope this makes it clearer!

Alan  Sep 12, 2016
 #12
avatar+33661 
0

Small correction:  in my fourth expression above the term beginning 1/8 should be preceded by a minus sign, not a plus sign.

 Sep 12, 2016
 #13
avatar+118687 
0

Thanks Alan,

Both Chris and I have seen you do that before, I remember because we talked about it, but niether of us understood it.

I've never done binomial expansions with fractional indices....not that I remember anyway......

 Sep 12, 2016
 #14
avatar+33661 
+5
Best Answer

Have a look at this Youtube video:  https://www.youtube.com/watch?v=bYZWW0fSLJU 

Alan  Sep 12, 2016
 #15
avatar+118687 
0

Thank you Alan,

 

I will       :D

Melody  Sep 12, 2016

3 Online Users

avatar
avatar