+0  
 
0
440
2
avatar

how do you find sin(a)= (5/13) I need to find what a/2

 Feb 28, 2016
 #2
avatar+129845 
0

sin(a/2)  =  ± √ [ (1 - cos(a))  / 2 ]     (1)

 

sin^2a + cos^2a = 1

 

(25/169) + cos^2a  = 1

 

cos^2a  =  1 - (25/169)

 

cos^2a = 144/169

 

cosa = ± 12/13

 

"a" will be an angle in the first or second quadrant since the sine is positive in both....so  "a/2"   will be in the first quadrant..and the sine  and cosine will be positive here....so 

 

a =  sin-1(5/13)  ≈ 22.62°   or   ≈ 157.38°

 

So.....a/2  ≈  11.31°    or  a/2   ≈ 78.69°

 

However,  "a/2"  falls into the first quadrant in both cases, so the positive root  in (1)  is taken

 

So.....using  (1) and assumng that a ≈ 22.62° :  sin(a/2)  =  + √ [ (1 - (12/13))  / 2 ]  ≈  0.196

 

[Note that "a" falls in the first quadrant so the positive value of the cosine is used in the identity]

 

Verify for yourself that the  sin (11.31°) ≈  0.196

 

And using (1) and assuming that a ≈ 157.38° : sin(a/2)  =  + √ [ (1 - (-12/13))  / 2 ]  ≈ 0.9806

 

[Note that "a" occurs in the second quadrant here, so the negative value of the cosine is used in the identity ]

 

And verify that sin (78.69°)  ≈ 0.9806

 

 

 

 

cool cool cool

 Feb 28, 2016

4 Online Users

avatar
avatar
avatar