+0  
 
0
217
1
avatar

$${\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{pi}{\left({\mathtt{s}}\right)}}{{\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{s}}\right)}^{{\mathtt{3}}}}}{\mathtt{\,\times\,}}{\mathtt{ds}}$$

 

What is the integral of ^^?

Guest Oct 18, 2014

Best Answer 

 #1
avatar+81063 
+10

Let s+1 = u

Then s = u -1

And ds = 1 du

So we have

4pi∫(u - 1)/u3 du =

4pi [∫1/u-2 du - ∫ u-3 du ] + C =

4pi [ (-1)u-1 - (-1/2)u-2 ]  + C =

4pi [ 1/(2u2) - 1/u ] + C =

2pi [ 1- 2u]/ u2 + C =   [back substitute ....( u = s+ 1) ]

2pi [ 1 -2(s + 1) ]/ (s + 1)2 + C

2pi [ -(2s + 1) ] / (s + 1)2 + C =

-2pi (2s + 1) / (s + 1)2 + C

 

CPhill  Oct 18, 2014
Sort: 

1+0 Answers

 #1
avatar+81063 
+10
Best Answer

Let s+1 = u

Then s = u -1

And ds = 1 du

So we have

4pi∫(u - 1)/u3 du =

4pi [∫1/u-2 du - ∫ u-3 du ] + C =

4pi [ (-1)u-1 - (-1/2)u-2 ]  + C =

4pi [ 1/(2u2) - 1/u ] + C =

2pi [ 1- 2u]/ u2 + C =   [back substitute ....( u = s+ 1) ]

2pi [ 1 -2(s + 1) ]/ (s + 1)2 + C

2pi [ -(2s + 1) ] / (s + 1)2 + C =

-2pi (2s + 1) / (s + 1)2 + C

 

CPhill  Oct 18, 2014

6 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details