+0

# This is Geometry. Once Again, I will Atempt to Copy and Paste the Link. I hope to You That it Work! :)

0
435
3
+279

This is Geometry. Once Again, I will Atempt to Copy and Paste the Link. I hope to You That it Work! :)

The Page is 808-809

natasza  Jun 17, 2014

#1
+85759
+10

8)   The locus of these points is just the angle bisector of ∠ABC......here's a pic... (ray BD is the bisector...at least it's supposed to be a ray...I forgot to include the little "arrow" at the end!!!...use your imagination!!)

10) The locus of these points is just a circle with a radius of 1 "inside" a circle of radius 2.....here's a pic.....(Note that the locus of points all lie on the midpoints of the radii of a circle of 2 cm)

14) I think the answer to this one is given by two perpendicular bisectors of AB and CD drawn from the center of the circle (In effect, radial lines drawn to the edge of the circle that bisect chords AB  and CD....if a radial line bisects a chord it is also perpendicular to that chord!!) .....something like this..(OE and OF are the locus of points, i.e., perpendicular bisectors of the two chords AB and CD....or at least as "perpendicular" as I could make them!!!) ...Note that every point on OE is equidistant from AB and every point on OF is equidistant from CD....to be techically correct, if OE and OF were extended infinitely, all the points on both would be equidistant from the two ends of their respective bisected chords......

CPhill  Jun 17, 2014
Sort:

#1
+85759
+10

8)   The locus of these points is just the angle bisector of ∠ABC......here's a pic... (ray BD is the bisector...at least it's supposed to be a ray...I forgot to include the little "arrow" at the end!!!...use your imagination!!)

10) The locus of these points is just a circle with a radius of 1 "inside" a circle of radius 2.....here's a pic.....(Note that the locus of points all lie on the midpoints of the radii of a circle of 2 cm)

14) I think the answer to this one is given by two perpendicular bisectors of AB and CD drawn from the center of the circle (In effect, radial lines drawn to the edge of the circle that bisect chords AB  and CD....if a radial line bisects a chord it is also perpendicular to that chord!!) .....something like this..(OE and OF are the locus of points, i.e., perpendicular bisectors of the two chords AB and CD....or at least as "perpendicular" as I could make them!!!) ...Note that every point on OE is equidistant from AB and every point on OF is equidistant from CD....to be techically correct, if OE and OF were extended infinitely, all the points on both would be equidistant from the two ends of their respective bisected chords......

CPhill  Jun 17, 2014
#2
+279
0

Okay, i see! :D

CPhill

natasza  Jun 17, 2014
#3
+279
0

Hey CPhill!

My instructor Said That #8 Should be "equidistance from the interior angle" and that its not "completely wrong"

natasza  Jun 18, 2014

### 29 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details