+0  
 
0
255
2
avatar

$$\left({\left({\frac{\left({\sqrt{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{\left({\sqrt{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}}\right)}^{{log8}{\left({\mathtt{0.25}}\right)}}\right) = {{\mathtt{1}}}^{{{log}}_{{\mathtt{8}}}{\left({\mathtt{0.25}}\right)}}$$

$${{\mathtt{2}}}^{\left({\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}}\right)}{\mathtt{\,-\,}}{{\mathtt{4}}}^{{\mathtt{x}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{8}}}^{{\mathtt{x}}} = {\mathtt{0}}$$

 

  Can anyone tell me what are the steps for this ?

  And how i can solve the second one ?

Guest Nov 19, 2014

Best Answer 

 #2
avatar+91001 
+10

$$\\2^{(x-2)}-4^x+8^x=0\\
2^x*2^{-2}-2^{2x}+2^{3x}=0\\
2^x*2^{-2}-(2^{x})^2+(2^{x})^3=0\\
2^x(2^{-2}-2^{x}+(2^{x})^2)=0\\
2^x \mbox{ cannot equal zero so}\\
2^{-2}-2^{x}+(2^{x})^2=0\\
$Let $ y=2^x\\
2^{-2}-y+y^2=0\\
y^2-y+\frac{1}{4}=0\\\\
y=\frac{1\pm\sqrt{1-1}}{2}=\frac{1}{2}\\
$therefore$\\
\frac{1}{2}=2^x\\
2^{-1}=2^x\\
x=-1$$

Melody  Nov 20, 2014
Sort: 

2+0 Answers

 #1
avatar+17655 
+5

For the top equation:  there is: (√2 - 1) / (√2 - 1)   --->  but this equals 1. So any finite exponent of 1 will work.

For the second equation:

2^(x - 2) - 4^x + 8^x  =  0

--->  2^(x - 2) - (2^2)^x + (2^3)^x  =  0

--->  2^(x - 2) - 2^(2x) + 2^(3x)  =  0     --->  x = -1     (I solved it by graphing; but it checks fairly easily.)

geno3141  Nov 19, 2014
 #2
avatar+91001 
+10
Best Answer

$$\\2^{(x-2)}-4^x+8^x=0\\
2^x*2^{-2}-2^{2x}+2^{3x}=0\\
2^x*2^{-2}-(2^{x})^2+(2^{x})^3=0\\
2^x(2^{-2}-2^{x}+(2^{x})^2)=0\\
2^x \mbox{ cannot equal zero so}\\
2^{-2}-2^{x}+(2^{x})^2=0\\
$Let $ y=2^x\\
2^{-2}-y+y^2=0\\
y^2-y+\frac{1}{4}=0\\\\
y=\frac{1\pm\sqrt{1-1}}{2}=\frac{1}{2}\\
$therefore$\\
\frac{1}{2}=2^x\\
2^{-1}=2^x\\
x=-1$$

Melody  Nov 20, 2014

16 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details