Processing math: 100%
 
+0  
 
0
668
2
avatar

I saw in a magazine that there was a contest or something about determining the 3 last digits of 3^123456, is there anyone that could help with this? 

 Mar 14, 2016

Best Answer 

 #2
avatar+26397 
+30

I saw in a magazine that there was a contest or something about determining the 3 last digits of 3^123456, is there anyone that could help with this? 

 

3123456(mod1000)?

 

 aφ(m)=1(modm), if gcd(a,m)=1 

 

a=3

m=1000=2353

 

1.)  gcd(3,1000)=1

 

2.)

 φ(1000)=1000(112)(115)φ(1000)=1000(12)(45)φ(1000)=400

 

3.)  3400=1(mod1000)

 

4. Split 123456 in units of 400

123456=400308+2563123456(mod1000)=3400308+256(mod1000)=34003083256(mod1000)=(3400=1(mod1000))3083256(mod1000)=13083256(mod1000)=13256(mod1000)=3256(mod1000)|310=49(mod1000)=31025+6(mod1000)=3102536(mod1000)=(310)2536(mod1000)=(49)2536(mod1000)

 

 

=1311081016089963454886184368275274375604160521(mod1000)=521

 

 

laugh

 Mar 15, 2016
edited by heureka  Mar 15, 2016
 #1
avatar
0

Here are the last 10 digits =7044619521

 Mar 15, 2016
 #2
avatar+26397 
+30
Best Answer

I saw in a magazine that there was a contest or something about determining the 3 last digits of 3^123456, is there anyone that could help with this? 

 

3123456(mod1000)?

 

 aφ(m)=1(modm), if gcd(a,m)=1 

 

a=3

m=1000=2353

 

1.)  gcd(3,1000)=1

 

2.)

 φ(1000)=1000(112)(115)φ(1000)=1000(12)(45)φ(1000)=400

 

3.)  3400=1(mod1000)

 

4. Split 123456 in units of 400

123456=400308+2563123456(mod1000)=3400308+256(mod1000)=34003083256(mod1000)=(3400=1(mod1000))3083256(mod1000)=13083256(mod1000)=13256(mod1000)=3256(mod1000)|310=49(mod1000)=31025+6(mod1000)=3102536(mod1000)=(310)2536(mod1000)=(49)2536(mod1000)

 

 

=1311081016089963454886184368275274375604160521(mod1000)=521

 

 

laugh

heureka Mar 15, 2016
edited by heureka  Mar 15, 2016

3 Online Users