C
14
D 9 E = 71°
We can apply the Law of Sines to find the measure of angle DCE....we have that
sin DCE / 9 = sin CED / 14
sin DCE / 9 = sin (71) / 14
sin DCE = 9 sin (71) /14
sin DCE = .6078
Taking the arcsin we have that
arcsin (.6078) = DCE ≈ 37.43°
So angle CDE = 180 - 71 - 37.43 = 71.57° = 71.6°