We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
44
2
avatar

Let \(\frac{m}{n}\) be a fraction, where \(m\) and \(n\) are positive integers. Consider the operation defined by replacing \(\frac{m}{n}\) by \(\frac{m+1}{n+1}\) and then writing the result in lowest terms. For example, applying this operation to \(\frac{5}{14}\) would give \(\frac{2}{5}\). How many times must this operation be repeatedly applied to \(\frac{1}{2005}\) before we obtain \(\frac{2004}{2005} \).

 Oct 12, 2019
 #1
avatar
+1

See the answer here:  https://web2.0calc.com/questions/can-u-please-help_1

 Oct 12, 2019
 #2
avatar+439 
+5

1 / 1005
1 / 1003
1 / 502
2 / 503
1 / 168
2 / 169
3 / 170
This continues until you get: 166 / 333 + 1
165 / 332
166 / 333
1 / 2
2 / 3
3 / 4 - This continues until you get: 2004 / 2005
2001 / 2002
2002 / 2003
2003 / 2004
2004 / 2005
TOTAL TERMS = 2,174

 Oct 13, 2019

34 Online Users

avatar
avatar