Can someone help me use the definition of a derivative using the f(x) listed below.
f(x)=1√x2+5
I got my f(x+h)=1√(x+h)2+5
then subtracted my f(x+h) by my f(x) all over h and got confused at a few part and got the wrong answer. I know for a fact that my f(x+h) is correct tho.
Can someone help me use the definition of a derivative using the f(x) listed below.
f(x)=1√x2+5
f′(x)=limh→0f(x+h)−f(x)hf′(x)=limh→0(1√(x+h)2+5−1√x2+5)⋅(1√(x+h)2+5+1√x2+5)h⋅(1√(x+h)2+5+1√x2+5)|(a−b)(a+b)=a2−b2f′(x)=limh→0(1(x+h)2+5−1x2+5)h⋅(1√(x+h)2+5+1√x2+5)f′(x)=limh→0(x2+5)−[(x+h)2+5][(x+h)2+5]⋅(x2+5)h⋅(1√(x+h)2+5+1√x2+5)f′(x)=limh→0(x2+5)−(x2+2xh+h2+5)[(x+h)2+5]⋅(x2+5)h⋅(1√(x+h)2+5+1√x2+5)f′(x)=limh→0(x2+5)−x2−2xh−h2−5)[(x+h)2+5]⋅(x2+5)h⋅(1√(x+h)2+5+1√x2+5)f′(x)=limh→0x2+5−x2−2xh−h2−5[(x+h)2+5]⋅(x2+5)h⋅(1√(x+h)2+5+1√x2+5)f′(x)=limh→0−2xh−h2[(x+h)2+5]⋅(x2+5)h⋅(1√(x+h)2+5+1√x2+5)f′(x)=limh→0−2xh−h2h⋅(1√(x+h)2+5+1√x2+5)⋅[(x+h)2+5]⋅(x2+5)f′(x)=limh→0h⋅(−2x−h)h⋅(1√(x+h)2+5+1√x2+5)⋅[(x+h)2+5]⋅(x2+5)f′(x)=limh→0−2x−h(1√(x+h)2+5+1√x2+5)⋅[(x+h)2+5]⋅(x2+5)f′(x)=−2x−0(1√(x+0)2+5+1√x2+5)⋅[(x+0)2+5]⋅(x2+5)f′(x)=−2x(1√x2+5+1√x2+5)⋅(x2+5)⋅(x2+5)f′(x)=−2x2⋅1√x2+5⋅(x2+5)2f′(x)=−x1√x2+5⋅(x2+5)2f′(x)=−x(x2+5)2√x2+5f′(x)=−x√(x2+5)4√x2+5f′(x)=−x√(x2+5)4x2+5f′(x)=−x√(x2+5)3