We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
164
2
avatar

 

 

 

 Feb 10, 2019
 #1
avatar+57 
+1

Multiply by the recriprocal of the algebraic expression you are trying to divide by.

 Feb 10, 2019
 #2
avatar+4322 
+1

1. I'll give a solution just for this one: Take the reciprocal like the user above had said. 

 

1. \(\frac{2p}{4p^2-1}\times \frac{6p+3}{6p^3} \)

 

2. We realize that \(\frac{6p+3}{6p^3}=\frac{2p+1}{2p^3}.\)

 

3. We get: \(\frac{2p\left(2p+1\right)}{\left(4p^2-1\right)\times \:2p^3}\).

 

4. And. \(\frac{p\left(2p+1\right)}{\left(4p^2-1\right)p^3}\), so \(\frac{2p+1}{p^2\left(4p^2-1\right)}\).

 

5. Factor: \(4p^2-1:\quad \left(2p+1\right)\left(2p-1\right)\)

 

6. Therefore, \(\frac{1}{p^2\left(2p-1\right)}\) , consequently, \(p^2\left(2p-1\right):\quad 2p^3-p^2.\)

 

Thus, the final answer is \(\boxed{\frac{1}{2p^3-p^2}}.\)

.
 Feb 10, 2019

19 Online Users

avatar