(2x3) * (8xy2) * (3y)
= (2*8*3)*(x3+1)*(y2+1)
= 48 * x4 * y3
= 48x4y3
Simplify the following:
2×8×3 x^3 x y^2 y
Combine products of like terms.
2 x^3×8 x y^2×3 y = 2 x^(3+1)×8 y^(2+1)×3:
2×8×3 x^(3+1) y^(2+1)
Evaluate 2+1.
2+1 = 3:
2×8×3 x^(3+1) y^3
Evaluate 3+1.
3+1 = 4:
2×8×3 x^4 y^3
Multiply 2 and 8 together.
2×8 = 16:
16×3 x^4 y^3
Multiply 16 and 3 together.
16×3 = 48:
Answer: |
| 48 x^4 y^3
Can Someone solve this ?
2x^3*8xy^2*3y
\( \small{ \begin{array}{rcl} 2x^3\cdot 8xy^2\cdot 3y &=&\\ &=& 2\cdot 8\cdot 3 \cdot x^3\cdot x \cdot y^2\cdot y \\ &=& 48 \cdot x^{3+1}\cdot y^{2+1}\\ \mathbf{ 2x^3\cdot 8xy^2\cdot 3y } & \mathbf{=} & \mathbf{48 \cdot x^4\cdot y^3} \end{array} } \)
(2x3) * (8xy2) * (3y)
= (2*8*3)*(x3+1)*(y2+1)
= 48 * x4 * y3
= 48x4y3