We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
218
2
avatar+179 

Let \(p(x) = 2x^2 + 7x + c\), where c is not equal to 0. If r1 and r2 are the roots of p(x), then find the value of 1/r1 + 1/r2 in terms of c.

 Dec 9, 2018

Best Answer 

 #1
avatar+5233 
+1

\(\text{just use the quadratic formula}\\ r_1,r_2 = \dfrac{-7\pm\sqrt{49-8c}}{4}\\ \dfrac{1}{r_1}+\dfrac{1}{r_2} = \dfrac{4}{-7+\sqrt{49-8c}}+ \dfrac{4}{-7-\sqrt{49-8c}}=\\ \dfrac{-56}{49-49+8c} = \dfrac{-56}{-8c}= \dfrac{7}{c}\)

.
 Dec 9, 2018
 #1
avatar+5233 
+1
Best Answer

\(\text{just use the quadratic formula}\\ r_1,r_2 = \dfrac{-7\pm\sqrt{49-8c}}{4}\\ \dfrac{1}{r_1}+\dfrac{1}{r_2} = \dfrac{4}{-7+\sqrt{49-8c}}+ \dfrac{4}{-7-\sqrt{49-8c}}=\\ \dfrac{-56}{49-49+8c} = \dfrac{-56}{-8c}= \dfrac{7}{c}\)

Rom Dec 9, 2018
 #2
avatar+22572 
+10

Let \(\large{p(x) = 2x^2 + 7x + c}\),
where \(c\) is not equal to \(0\).
If \(\large{r_1}\) and \(\large{r_2}\) are the roots of \(\large{p(x)}\),

then find the value of \(\large{\dfrac{1}{r_1}} + \large{\dfrac{1}{r_2}}\)in terms of \(\large{c}\).

 

\(\begin{array}{|rcll|} \hline p\left(\dfrac{1}{x}\right) = 2\left(\dfrac{1}{x}\right)^2 + 7\dfrac{1}{x} + c &=& 0\\\\ \dfrac{2}{x^2} + \dfrac{7}{x} + c &=& 0 \quad | \quad \cdot x^2 \\ 2 + 7x + cx^2 &=& 0 \\ cx^2+7x+2 &=& 0 \\\\ x &=& \dfrac{-7\pm\sqrt{7^2-4\cdot c\cdot 2}}{2c} \\ x &=& \dfrac{-7\pm\sqrt{49-4c}}{2c} \\ \dfrac{1}{r_1} + \dfrac{1}{r_2} &=& \dfrac{-7+\sqrt{49-4c}}{2c} + \dfrac{-7-\sqrt{49-4c}}{2c} \\\\ &=& \dfrac{-7+\sqrt{49-4c}-7-\sqrt{49-4c}}{2c} \\\\ &=& \dfrac{-14}{2c} \\\\ \mathbf{\dfrac{1}{r_1} + \dfrac{1}{r_2} } &\mathbf{=}& \mathbf{ -\dfrac{7}{c} } \\ \hline \end{array}\)

 

laugh

 Dec 10, 2018
edited by heureka  Dec 11, 2018

13 Online Users

avatar