Can you solve this smultaneous linear equation by using the elimination, please?
Thanks!
y + z + w = 6
z +2w + x = 8
3w + x + y =10
x + y + z = 9
I found this very hard!
I am going to rewrite the equations because I prefer them in alphabetical order:
1) w + y + z = 6
2) 2w + x + z = 8
3) 3w + x + y = 10
4) x + y + z = 9
Combine equations 1) and 2) to remove the w-term:
w + y + z = 6 ---> multiply by 2 ---> 2w 2y + 2z = 12
2w + x + z = 8 ---> multiply by -1 ---> -2w - x - z = -8
Add down the columns ---> -x + 2y + z = 4 (equation 5)
Combine equations 1) and 3) to remove the w-term:
w + y + z = 6 ---> multiply by 3 ---> 3w + 3y + 3z = 18
3w + x + y = 10 ---> multiply by -1 ---> -3w - x - y = -10
Add down the columns ---> -x + 2y + 3z = 8
Combine these two new equations:
-x + 2y + z = 4 ---> -x + 2y + z = 4
-x + 2y + 3z = 8 ---> multiply by -1 ---> x - 2y - 3z = -8
Add down the columns: ---> -2z = -4 ---> z = 2
Combine equations 5) and 4) to remove the x-term:
-x + 2y + z = 4
x + y + z = 9
Add down the columns: 3y + 2z = 13
Since z = 2: 3y + 2(2) = 13 ---> 3y + 4 = 13 ---> 3y = 9 ---> y = 3
Using equation 4): x + y + z = 9
Since z = 2 and y = 3: x + 3 + 2 = 9 ---> x + 5 = 9 ---> x = 4
Using equation 1): w + y + z = 6 ---> w + 3 + 2 = 6 ---> w + 5 = 6 ---> w = 1
I am going to rewrite the equations because I prefer them in alphabetical order:
1) w + y + z = 6
2) 2w + x + z = 8
3) 3w + x + y = 10
4) x + y + z = 9
Combine equations 1) and 2) to remove the w-term:
w + y + z = 6 ---> multiply by 2 ---> 2w 2y + 2z = 12
2w + x + z = 8 ---> multiply by -1 ---> -2w - x - z = -8
Add down the columns ---> -x + 2y + z = 4 (equation 5)
Combine equations 1) and 3) to remove the w-term:
w + y + z = 6 ---> multiply by 3 ---> 3w + 3y + 3z = 18
3w + x + y = 10 ---> multiply by -1 ---> -3w - x - y = -10
Add down the columns ---> -x + 2y + 3z = 8
Combine these two new equations:
-x + 2y + z = 4 ---> -x + 2y + z = 4
-x + 2y + 3z = 8 ---> multiply by -1 ---> x - 2y - 3z = -8
Add down the columns: ---> -2z = -4 ---> z = 2
Combine equations 5) and 4) to remove the x-term:
-x + 2y + z = 4
x + y + z = 9
Add down the columns: 3y + 2z = 13
Since z = 2: 3y + 2(2) = 13 ---> 3y + 4 = 13 ---> 3y = 9 ---> y = 3
Using equation 4): x + y + z = 9
Since z = 2 and y = 3: x + 3 + 2 = 9 ---> x + 5 = 9 ---> x = 4
Using equation 1): w + y + z = 6 ---> w + 3 + 2 = 6 ---> w + 5 = 6 ---> w = 1
Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!