+0  
 
0
255
1
avatar

Find the Cartesian equation of the graph whose parametric equations are x=3cos(theta)-1 and y =4sin(theta)+1.

Guest Aug 14, 2017
 #1
avatar+19830 
+1

Find the Cartesian equation of the graph

whose parametric equations are

x=3cos(theta)-1 and

y =4sin(theta)+1.

 

\(\begin{array}{|rcll|} \hline & x &=& 3\cos(\theta)-1 \\ (1) & \frac{x+1}{3} &=& \cos(\theta) \\\\ & y &=& 4\sin(\theta)+1 \\ (2) & \frac{y-1}{4} &=& \sin(\theta) \\\\ \hline &&& \cos^2(\theta) + \sin^2(\theta) = 1 \\ & \left( \frac{x+1}{3} \right)^2 + \left( \frac{y-1}{4} \right)^2 &=& 1 \\\\ & \mathbf{ \frac{(x+1)^2}{3^2} + \frac{(y-1)^2}{4^2} } & \mathbf{=} & \mathbf{ 1 } & | \quad \text{ ellipse with center } (-1,1) \\ & && & | \quad \text{ and } a = 3 \text{ and } b=4 \\ \hline \end{array}\)

 

laugh

heureka  Aug 15, 2017

7 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.