Let a,b,c,d,e,f be nonnegative real numbers such that a2+b2+c2+d2+e2+f2=6 and ab+cd+ef=3. What is the maximum value of a+b+c+d+e+f?
I think that you need to use Cauchy-Schwarz
Let a,b,c,d,e,f be nonnegative real numbers such that a2+b2+c2+d2+e2+f2=6 and ab+cd+ef=3.
What is the maximum value of a+b+c+d+e+f ?
The Cauchy–Schwarz inequality states that for all vectors u and v of an inner product space it is true that
|⟨u,v⟩|2≤⟨u,u⟩⋅⟨v,v⟩,
where ⟨⋅,⋅⟩ is the inner product.
Let →u=(a+bc+de+f) Let →v=(111)
⟨u,v⟩=(a+bc+de+f)(111)=a+b+c+d+e+f⟨u,u⟩=(a+bc+de+f)(a+bc+de+f)=a2+b2+c2+d2+e2+f2+2(ab+cd+ef)=6+2(3)=12⟨v,v⟩=(111)(111)=12+12+12=3|⟨u,v⟩|2≤⟨u,u⟩⋅⟨v,v⟩(a+b+c+d+e+f)2≤12⋅3(a+b+c+d+e+f)2≤36a+b+c+d+e+f≤6
The maximum value of a+b+c+d+e+f is 6.