We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
115
2
avatar+133 

Let \(a, b, c, d, e, f\) be nonnegative real numbers such that \(a^2 + b^2 + c^2 + d^2 + e^2 + f^2 = 6\) and \(ab + cd + ef = 3\). What is the maximum value of \(a+b+c+d+e+f\)?

 

I think that you need to use Cauchy-Schwarz

 Aug 14, 2019
 #1
avatar+23295 
+3

Let \(a, b, c, d, e, f\) be nonnegative real numbers such that \(a^2 + b^2 + c^2 + d^2 + e^2 + f^2 = 6\) and \(ab + cd + ef = 3\).
What is the maximum value of \(a+b+c+d+e+f\) ?

 

The Cauchy–Schwarz inequality states that for all vectors  \(\mathbf{u}\) and  \(\mathbf{v}\) of an inner product space it is true that
\({\displaystyle |\langle \mathbf {u} ,\mathbf {v} \rangle |^{2}\leq \langle \mathbf {u} ,\mathbf {u} \rangle \cdot \langle \mathbf {v} ,\mathbf {v} \rangle },\)
where \({\displaystyle \langle \cdot ,\cdot \rangle }\) is the inner product.

 

\(\text{Let $\vec{u} = \begin{pmatrix} a+b \\c+d\\e+f \end{pmatrix}$ } \\ \text{Let $\vec{v} = \begin{pmatrix} 1 \\1\\1 \end{pmatrix}$ } \)

 

\(\begin{array}{|rcll|} \hline \langle \mathbf {u} ,\mathbf {v} \rangle &=& \begin{pmatrix} a+b \\c+d\\e+f \end{pmatrix}\begin{pmatrix} 1 \\1\\1 \end{pmatrix} \\ &=& a+b+c+d+e+f \\\\ \langle \mathbf {u} ,\mathbf {u} \rangle &=& \begin{pmatrix} a+b \\c+d\\e+f \end{pmatrix}\begin{pmatrix} a+b \\c+d\\e+f \end{pmatrix} \\ &=& a^2+b^2+c^2+d^2+e^2+f^2+2(ab + cd + ef) \\ &=& 6+2(3) \\ &=&\mathbf{ 12 } \\\\ \langle \mathbf {v} ,\mathbf {v} \rangle &=& \begin{pmatrix} 1 \\1\\1 \end{pmatrix}\begin{pmatrix} 1 \\1\\1 \end{pmatrix} \\ &=& 1^2+1^2+1^2 \\ &=& \mathbf{ 3 } \\\\ \hline |\langle \mathbf {u} ,\mathbf {v} \rangle |^{2} &\leq& \langle \mathbf {u} ,\mathbf {u} \rangle \cdot \langle \mathbf {v} ,\mathbf {v} \rangle \\ (a+b+c+d+e+f)^2 &\le& 12\cdot 3 \\ (a+b+c+d+e+f)^2 &\le& 36 \\ \mathbf{ a+b+c+d+e+f } & \mathbf{\le} & \mathbf{6} \\ \hline \end{array}\)

 

The maximum value of \(a+b+c+d+e+f\) is \(\mathbf{6}\).

 

laugh

 Aug 15, 2019
 #2
avatar+6045 
0

bravissimo!

Rom  Aug 16, 2019

19 Online Users

avatar