Processing math: 100%
 
+0  
 
+1
994
2
avatar+159 

Let a,b,c,d,e,f be nonnegative real numbers such that a2+b2+c2+d2+e2+f2=6 and ab+cd+ef=3. What is the maximum value of a+b+c+d+e+f?

 

I think that you need to use Cauchy-Schwarz

 Aug 14, 2019
 #1
avatar+26396 
+3

Let a,b,c,d,e,f be nonnegative real numbers such that a2+b2+c2+d2+e2+f2=6 and ab+cd+ef=3.
What is the maximum value of a+b+c+d+e+f ?

 

The Cauchy–Schwarz inequality states that for all vectors  u and  v of an inner product space it is true that
|u,v|2u,uv,v,
where , is the inner product.

 

Let u=(a+bc+de+f) Let v=(111) 

 

u,v=(a+bc+de+f)(111)=a+b+c+d+e+fu,u=(a+bc+de+f)(a+bc+de+f)=a2+b2+c2+d2+e2+f2+2(ab+cd+ef)=6+2(3)=12v,v=(111)(111)=12+12+12=3|u,v|2u,uv,v(a+b+c+d+e+f)2123(a+b+c+d+e+f)236a+b+c+d+e+f6

 

The maximum value of a+b+c+d+e+f is 6.

 

laugh

 Aug 15, 2019
 #2
avatar+6252 
-1

bravissimo!

Rom  Aug 16, 2019

0 Online Users