+0  
 
+1
894
2
avatar+5 

solve tan 2x = - cot (x + pi/3)

 Mar 22, 2017
 #1
avatar+118667 
0

I have tried to post an answer but the site froze up and I lost it all.

Here is the short version

 

solve tan 2x = - cot (x + pi/3)

 

I solved by graphing.

 

Herer is the full graph

https://www.desmos.com/calculator/mblxlza8ms

 

From the graph it appears the answer is        \(x=n\pi+\frac{5\pi}{6}\qquad n \in Z\)

 

In my last (lost) answer I substituted this answer in to check it was correct and it was exactly so.

 

If you want to ask questions by all means do so :)

 

 

Here is the pic:

 Mar 22, 2017
edited by Melody  Mar 22, 2017
 #2
avatar
+1

Don't know whether or not this is the long version, but Melody hasn't posted it so I will

\(\displaystyle \tan2x = -\cot(x+\pi/3),\\\frac{\sin2x}{\cos2x}=-\frac{\cos(x+\pi/3)}{\sin(x+\pi/3)},\\\sin2x\sin(x+\pi/3)=-\cos2x\cos(x+\pi/3),\\ \cos2x\cos(x+\pi/3)+\sin2x\sin(x+\pi/3)=0,\\\cos[2x-(x+\pi/3)]=0,\\\cos(x-\pi/3)=0,\\x-\pi/3=(2n+1)\pi/2=n\pi+\pi/2,\;\;n=0,\pm1,\pm2,\dots\\x=n\pi+5\pi/6,\;\;n=0,\pm1,\pm2,\dots\)

 Mar 23, 2017

0 Online Users