+0  
 
0
265
1
avatar+644 

Find the area of a triangle with side lengths frac43, 2, and frac83

waffles  Aug 10, 2017

Best Answer 

 #1
avatar+19480 
+2

Find the area of a triangle with side lengths frac43, 2, and frac83

 

Let \(a = \frac43\)

Let \(b = 2\)

Let \(c = \frac83\)

 

\(\begin{array}{rcll} \mathbf{Formula:} \\ \hline \text{Area of a triangle with Heron} \\ \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \\ s &=& \frac{a+b+c}{2} \\ \end{array} \)

 

 

\(\begin{array}{lcll} \mathbf{s = \ ? } \\ \begin{array}{|rcll|} \hline s &=& \frac{a+b+c}{2} \\ &=& \frac{\frac43+2+\frac83}{2} \\ &=& \frac23+1+\frac43 \\ &=& \frac63+1 \\ &=& 2+1 \\ &\mathbf{=}& \mathbf{3} \\ \hline \end{array} \\ \end{array} \)

 

\(\begin{array}{lcll} \mathbf{A = \ ? } \\ \begin{array}{|rcll|} \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \\ &=&\sqrt{3(3-\frac43)(3-2)(3-\frac83)} \\ &=&\sqrt{3(\frac{9}{3}-\frac43)(1)(\frac{9}{3}-\frac83)} \\ &=&\sqrt{3(\frac{9-4}{3})(\frac{9-8}{3})} \\ &=&\sqrt{3(\frac{5}{3})(\frac{1}{3})} \\ &=&\sqrt{5(\frac{1}{3})} \\ &\mathbf{=}&\mathbf{\sqrt{\frac53}} \\ \hline \end{array} \\ \end{array}\)

 

The area is \( \mathbf{\sqrt{\frac53} = 1.29}\)

 

laugh

heureka  Aug 10, 2017
 #1
avatar+19480 
+2
Best Answer

Find the area of a triangle with side lengths frac43, 2, and frac83

 

Let \(a = \frac43\)

Let \(b = 2\)

Let \(c = \frac83\)

 

\(\begin{array}{rcll} \mathbf{Formula:} \\ \hline \text{Area of a triangle with Heron} \\ \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \\ s &=& \frac{a+b+c}{2} \\ \end{array} \)

 

 

\(\begin{array}{lcll} \mathbf{s = \ ? } \\ \begin{array}{|rcll|} \hline s &=& \frac{a+b+c}{2} \\ &=& \frac{\frac43+2+\frac83}{2} \\ &=& \frac23+1+\frac43 \\ &=& \frac63+1 \\ &=& 2+1 \\ &\mathbf{=}& \mathbf{3} \\ \hline \end{array} \\ \end{array} \)

 

\(\begin{array}{lcll} \mathbf{A = \ ? } \\ \begin{array}{|rcll|} \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \\ &=&\sqrt{3(3-\frac43)(3-2)(3-\frac83)} \\ &=&\sqrt{3(\frac{9}{3}-\frac43)(1)(\frac{9}{3}-\frac83)} \\ &=&\sqrt{3(\frac{9-4}{3})(\frac{9-8}{3})} \\ &=&\sqrt{3(\frac{5}{3})(\frac{1}{3})} \\ &=&\sqrt{5(\frac{1}{3})} \\ &\mathbf{=}&\mathbf{\sqrt{\frac53}} \\ \hline \end{array} \\ \end{array}\)

 

The area is \( \mathbf{\sqrt{\frac53} = 1.29}\)

 

laugh

heureka  Aug 10, 2017

11 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.