+0  
 
0
41
1
avatar+112 

Find the area of a triangle with side lengths frac43, 2, and frac83

 
waffles  Aug 10, 2017
social bar

Best Answer 

 #1
avatar+18348 
+2

Find the area of a triangle with side lengths frac43, 2, and frac83

 

Let \(a = \frac43\)

Let \(b = 2\)

Let \(c = \frac83\)

 

\(\begin{array}{rcll} \mathbf{Formula:} \\ \hline \text{Area of a triangle with Heron} \\ \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \\ s &=& \frac{a+b+c}{2} \\ \end{array} \)

 

 

\(\begin{array}{lcll} \mathbf{s = \ ? } \\ \begin{array}{|rcll|} \hline s &=& \frac{a+b+c}{2} \\ &=& \frac{\frac43+2+\frac83}{2} \\ &=& \frac23+1+\frac43 \\ &=& \frac63+1 \\ &=& 2+1 \\ &\mathbf{=}& \mathbf{3} \\ \hline \end{array} \\ \end{array} \)

 

\(\begin{array}{lcll} \mathbf{A = \ ? } \\ \begin{array}{|rcll|} \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \\ &=&\sqrt{3(3-\frac43)(3-2)(3-\frac83)} \\ &=&\sqrt{3(\frac{9}{3}-\frac43)(1)(\frac{9}{3}-\frac83)} \\ &=&\sqrt{3(\frac{9-4}{3})(\frac{9-8}{3})} \\ &=&\sqrt{3(\frac{5}{3})(\frac{1}{3})} \\ &=&\sqrt{5(\frac{1}{3})} \\ &\mathbf{=}&\mathbf{\sqrt{\frac53}} \\ \hline \end{array} \\ \end{array}\)

 

The area is \( \mathbf{\sqrt{\frac53} = 1.29}\)

 

laugh

 
heureka  Aug 10, 2017
Sort: 

1+0 Answers

 #1
avatar+18348 
+2
Best Answer

Find the area of a triangle with side lengths frac43, 2, and frac83

 

Let \(a = \frac43\)

Let \(b = 2\)

Let \(c = \frac83\)

 

\(\begin{array}{rcll} \mathbf{Formula:} \\ \hline \text{Area of a triangle with Heron} \\ \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \\ s &=& \frac{a+b+c}{2} \\ \end{array} \)

 

 

\(\begin{array}{lcll} \mathbf{s = \ ? } \\ \begin{array}{|rcll|} \hline s &=& \frac{a+b+c}{2} \\ &=& \frac{\frac43+2+\frac83}{2} \\ &=& \frac23+1+\frac43 \\ &=& \frac63+1 \\ &=& 2+1 \\ &\mathbf{=}& \mathbf{3} \\ \hline \end{array} \\ \end{array} \)

 

\(\begin{array}{lcll} \mathbf{A = \ ? } \\ \begin{array}{|rcll|} \hline A &=& \sqrt{s(s-a)(s-b)(s-c)} \\ &=&\sqrt{3(3-\frac43)(3-2)(3-\frac83)} \\ &=&\sqrt{3(\frac{9}{3}-\frac43)(1)(\frac{9}{3}-\frac83)} \\ &=&\sqrt{3(\frac{9-4}{3})(\frac{9-8}{3})} \\ &=&\sqrt{3(\frac{5}{3})(\frac{1}{3})} \\ &=&\sqrt{5(\frac{1}{3})} \\ &\mathbf{=}&\mathbf{\sqrt{\frac53}} \\ \hline \end{array} \\ \end{array}\)

 

The area is \( \mathbf{\sqrt{\frac53} = 1.29}\)

 

laugh

 
heureka  Aug 10, 2017

17 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details